

Overview of the ATLAS results on jet quenching

Dominik Derendarz February 23, 2021

Heavy ion collisions - QCD laboratory

2

Heavy ion collisions - QCD laboratory

Heavy ion collisions allows to reach high enough temperature to trigger the phase transition to QGP (for about few fermi or few 10⁻²³ s)

Signatures of QGP formation

Collective phenomena

Initial **spatial** anisotropy is converted to **momentum** anisotropy of final state particles

Signatures of QGP formation

Collective phenomena

Jet quenching

Initial **spatial** anisotropy is converted to **momentum** anisotropy of final state particles

• Energy loss of high pT patron due to the interactions with the QGP medium

Bare eye jet quenching from 2010

ATLAS detector

Solenoid magnet | Transition radiation tracker

Muon chambers

Semiconductor tracker

Heavy ion datasets

System	Year	sqrt(s _{NN}) [TeV]	L _{int}
Pb+Pb	2010	2.76	7 μb ⁻¹
Pb+Pb	2011	2.76	0.14 nb ⁻¹
рр	2012	8	19.4 fb ⁻¹
рр	2013	2.76	4 pb ⁻¹
p+Pb	2013	5.02	29 nb ⁻¹
рр	2015	5.02	28 pb ⁻¹
Pb+Pb	2015	5.02	0.49 nb ⁻¹
p+Pb	2016	5.02	0.5 nb ⁻¹
p+Pb	2016	8.16	0.16 pb ⁻¹
Xe+Xe	2017	5.44	3 μb ⁻¹
рр	2017	5.02	270 pb ⁻¹
Pb+Pb	2018	5.02	1.76 nb ⁻¹

For **Run3** (2022-2024) expected:

- $\sim 6nb^{-1} \text{ of } Pb + Pb$
- p+Pb ~X nb⁻¹
- Short pilot run with
 0+0 and p+0

Run1

Run2

Centrality of heavy ion collision

- One nucleon can interact many times due to the thickness of the other nuclei that he see
- <N_{part}>, <N_{coll}> estimated based on MC Glauber fits to data

Centrality of heavy ion collision

Peripheral collision

Central collision

Jets in vacuum

Jets: collimated showers of energetic particles that carry a large fraction of the energy available in the collisions

- In Theory: jets are proxies for hard-scattered partons
- In Experiment: jet is what your jet-finder gives you

Quark or gluon

inside of nucleon

Quark or gluon inside of nucleon

Jets in the medium

Jets: collimated showers of energetic particles that carry a large fraction of the energy available in the collisions

- In Theory: jets are proxies for hard-scattered partons
- In Experiment: jet is what your jet-finder gives you

Interactions of medium and colored probe: elastic scattering, medium induced radiation, "drag force", medium excitation ?

Initial cross-section unchanged by presence of medium (modulo change in nPDF)

Quark or gluon inside of nucleon

> Quark or gluon inside of nucleon

Jets reconstruction - ATLAS heavy ion style

Jets reconstruction - ATLAS heavy ion style

- Average response (<pT^{rec} / pT^{truth}>) within 1% from unity almost independent on centrality
- Jet energy resolution (*\(\sigma\)*(p_T^{rec} / p_T^{truth}))
 dominated by the underlying event fluctuations.

Inclusive jet spectra

Inclusive jet spectra

Nuclear modification factor R_{AA}

Where nuclear overlap function $\langle T_{AA} \rangle$

$$\langle T_{\rm AB} \rangle_{\rm f} = \langle N_{\rm coll} \rangle_{\rm f} / \sigma_{\rm inel}^{\rm NN}$$

calculated in the Glauber MC approach (arXiv:nucl-ex/0701025)

Calibration of the T_{AA} scaling

arXiv:1910.13396 [nucl-ex]

Probes that are not interacting with the QGP medium (W, Z, γ) follows the $\langle T_{AA} \rangle$ scaling.

Jets R_{AA}

arXiv:1805.05635 [nucl-ex]

in the entire kinematic range

Path length dependent energy loss

• Jet v_n

Dijet asymmetry

Balanced pair of jets produced near the centre of the collisions zone

Unbalanced pair of jets produced near the edge of the collisions zone

Dijet asymmetry

Photon-jet asymmetry

Photons and Z's can help to calibrate the parton energy, however:

- Flavour fraction differs compared to dijets
- Rare process compared to the dijets production

 $r^{p_T\gamma}$

Photon-jet asymmetry

Photons and Z's can help to calibrate the parton energy, however:

 $c^{p_T\gamma}$

p_Tγ

 p_T

- Flavour fraction differs compared to dijets
- Rare process compared to the dijets production

(1/N_γ)(dN/dx)

```
ATLAS
     pp 5.02 TeV, 25 pb<sup>-1</sup>
     Pb+Pb 5.02 TeV, 0.49 nb<sup>-1</sup>
     p_{\tau}^{\gamma} = 100-158 \text{ GeV}
     pp (same each panel)
          Pb+Pb
                                arXiv:1809.07280 [nucl-ex]
                                   0-10%
0.2 0.4 0.6 0.8
                                        1.6 1.8
                             1.2 1.4
                                                 Х<sub>Јү</sub>
                   (\mathbf{x}_{\mathbf{J}\gamma} = \mathbf{p}_{\mathbf{T}}^{1}/\mathbf{p}_{\mathbf{T}}\gamma)
```

Important for understanding effect of geometry on jet quenching, calibration of energy loss and flavour composition.

Vn coefficients of charged particles measured to great precisions up to pT ~40 GeV

Jet vn

 $\phi^{\text{jet}}\psi_2$

 Ψ_{2}

measurement of the jets wrt. collision geometry this varies the amount of QGP that the jet sees

Jet vn

measurement of the jets wrt. collision geometry this varies the amount of QGP that the jet sees

measured jet v_2 to be 1-5% with no significant p_T or centrality dependence

Important for understanding effect of geometry on jet quenching

Centrality

Fragmentation functions

How do the particles in the jet carry its momentum?

$$D(z) \equiv \frac{1}{N_{\text{jet}}} \frac{dn_{\text{ch}}}{dz}$$
$$z \equiv p_{\text{T}} \cos \Delta R / p_{\text{T}}^{\text{jet}}$$
$$D(p_{\text{T}}) \equiv \frac{1}{N_{\text{jet}}} \frac{dn_{\text{ch}}}{dp_{\text{T}}}$$

$$R_{D(p_{\rm T})} \equiv \frac{D(p_{\rm T})_{\rm PbPb}}{D(p_{\rm T})_{\rm pp}}$$

Shower in medium

Shower in vacuum

0–10%

0.7

Not much modification in the core of the jet

31

0.8

arXiv:1805.05424 [nucl-ex]

0–10%

10–20%

20-30%

30-40%

40-60%

60-80%

0.7

T.2

0.6

Peripheral collisions approach vacuum like fragmentation patterns

8.0

r

• Parton color-charge dependence of jet quenching

Future measurements

Jets substructure

Do jets with different structure lose energy differently?

Jets substructure

Jet quenching in light ions collisions

Measurements of p+A type of collisions at LHC and RHIC left us with unresolved problem: *how to connect soft QGP with lack of modification in the hard sector?*

e.g. large heavy flavour v_2 but $R_{pA} \sim 1$

OO is a symmetric system about the size of pPb

Quenching of b-jets

The dependence of quenching on the type of parton that initiates the jet may provide insight into the underlying dynamics

- Type of parton that initiates the jet is difficult to determine experimentally
- Machine learning techniques used in experiments to identify b-jets

Summary

Using high statistics LHC data and new techniques bring us to era of precise measurements of jet quenching in heavy-ion collisions

- R_{AA} for inclusive jets measured to very high precision
- Measurement seams to support picture of path length dependence of energy loss
- Detailed studies of the modification of the fragmentation patterns for the quenched jets

We still need new measurements

- Each observable is sensitive to different aspect of probing the QGP
- Some observables are statistics hungry looking forward for more data

More details on ATLAS public results page:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults