Test of the three body interactions: lifetime measurements of excited states in neutronrich C and O isotopes

> MICHAŁ CIEMAŁA IFJ PAN KRAKOW

EXPERIMENT SPOKESPERSONS: S. LEONI, B. FORNAL, M. CIEMAŁA MILANO – IFJ PAN KRAKOW

GANIL LOCAL CONTACT: G. DEFRANCE, M. CIEMAŁA

AGATA@GANIL COLLABORATION, COORDINATORS: E. CLEMENT, S. LENZI VAMOS COLLABORATION, COORDINATOR: A. LEMASSON, GANIL, CAEN PARIS COLLABORATION, COORDINATOR A. MAJ, IFJ PAN, KRAKOW

Presentation plan

Motivation

- Lifetime determination method and simulations
- Results and plans for future

Motivation

Nuclear force is the "heart" of nuclear physics, and has been studied from ~1930.

During the past few decades a large effort has been made toward describing the nucleonnucleon (NN) interaction in the framework of chiral Effective Field Theory (EFT). The main idea is to exploit the symmetries of QCD to obtain an effective theory for low energy nuclear systems.

NN

NN+NNN

3 body interactions are common in many fields of complex systems.

water molecule H_2O

three body interaction contribution **14.5%**

DNA molecule

three body interaction contribution 24%

Source: en.wikipedia

The potential of a system of three or more nucleons must be accompanied by a contribution from the irreducible threebody force that is absent in the case of an isolated pair

$$V = V_{12} + V_{23} + V_{13} + V_{123}$$

Proton-deuteron elastic scattering

Experiments at CCB IFJ PAN with BINA setup

K. Ermisch (J. Golak, R. Skibiński, H. Witała) et al., Phys. Rev. C 68, 051001(R) (2003)

S. Kistryn, A. Kozela, E Stephan, (UJ, IFJ PAN, UŚ) 7

Binding energy of selected light nuclei:

values from the experiment (black) and calculations performed with: (i) twobody interactions only (NN) and, (ii) two-body + three-body terms (NN + NNN).

> Are there observables, which are more sensitive to the three-nucleon term of the nucleon-nucleon interaction? **For example, electromagnetic observables?**

For binding energy and excited state energy, the effect of three-nucleon forces is of the order of 10-30%.

Experimental setup

Experiment at GANIL, Caen, France One of the most sophisticated setups: VAMOS+AGATA+PARIS

Beam: ¹⁸O ions, 7.0 MeV/A Target: ¹⁸¹Ta 4 μm thick Goal: excited state lifetime determination Detectors used: AGATA+PARIS+VAMOS setup

Beam time: 10 days data taking in July 2017

E. Clement et al. NIMA 885, 1-12 (2017)

Experimental setup –VAMOS++ magnetic spectrometer

Allows to analyse and select the ions of interest resulting in the reaction.

VAMOS++ at 45 degree

VAMOS entrance detector: 2 Drift Chambers (for ions angle)

VAMOS focal plane:

DC (for Brho reconstruction),
6 rows of Ionization Chambers (for ∆E)
Plastic (for trigger and ToF)
Angular acceptance:
+/- 6 degree in theta, +/- 15 degree in phi

Experimental setup -AGATA

AGATA - Advanced Gamma Tracking Array, **high resolution** gamma-ray detector AGATA is being built within large European collaboration. After completion of construction AGATA will be the world-best gamma spectrometer.

AGATA 36 segments per crystal (6 longitudinal rings and 6 transversal sectors)

Tracking algorithms allow to reconstruct the path of the interacting g-ray in the detection material, its energy and incoming direction.

AGATA White Book: W. Korten et al, Eur. Phys. J. A (2020) 56:137

AGATA

31 crystals (backward angles) Working during our experiment at GANIL

Experimental setup - PARIS (High energy gamma-ray calorimeter)

 High efficiency gamma detector, based on scintilation materials, for medium resolution spectroscopy and calorimetry of g-rays in large energy range.
 It is characterized by very good time resolution (< 1 ns).

> PARIS is made of clusters: 1 Cluster = 9 phoswiches

2 PARIS clusters (18 phoswiches used) used in our experiment.

For measurement of high energy gammarays and for time definition.

24 PARIS cluster view

PARIS is constructed in international collaboration coordinated by IFJ PAN Krakow. After completion of construction PARIS will be the world-best high-energy gamma calorimeter

Data analysis

VAMOS magnetic spectrometer, ion mass selection:

lon mass:

 $M/Q = B\rho/(3.105\gamma\beta)$

 $M_0 = E/(931.5(\gamma - 1))$

 $Q = M_0 / (M/Q)$

 $M_r = (M/Q)Q_{int}$

10⁴

PARIS timing: large improvement in ion mass reconstruction

We measure velocity by: measuring the path in the spectrometer and the time between RF and Plastic at the end of focal plane.

¹⁸O MASS reconstruction using ion Time of flight with respect to cyclotron RF but RF signal is NOT stable in time

¹⁸O MASS reconstruction after PARIS correction

Using the excellent time response of PARIS (LaBr₃ part, FWHM < 1ns) RF fluctuations are corrected

VAMOS magnetic spectrometer, ion mass selection:

AGATA Spectra – Tracked and Doppler Corrected

Ion gated by VAMOS spectrometer

AGATA Spectra – Tracked and Doppler Corrected

lon gated by VAMOS spectrometer

Lifetime determination method and simulations

Gamma-ray Doppler shift - example

Correction with assumed ideally determined: emitter velocity (v) and angle between ion and gamma-ray (Θ) .

Velocity profile selection – example: ¹⁹O

Simulations are needed to extract lifetimes from γ lineshape

Event generator and simulations

1. Event generator (written by MC):

The beam is passing through the target decreasing its energy – dE/dx. Multi nucleon transfer reactions occur inside the target – kinematics, excitation energy. Excited level is let to decay by gamma ray (Eg) with lifetime t to be tested.

2. Simulation with detector response – comparison to the experimental gamma-ray spectrum by 2D chi² used to determine optimum lifetime.

From the measured velocity, by iterative process we deconvolute initial velocity after the rection.

Initial velocity after the reaction

M. Ciemała et al., submitted to EPJA (description of the method) https://arxiv.org/abs/2012.05180

Results

$2D \chi^2$ minimization

Compare by use of χ^2 simulated gamma-ray spectrum to experimental one, varying in the simulation lifetime t, and gamma-ray energy E γ .

TEST of KNOWN lifetimes in the 100s femtoseconds region

$$\tau = 140^{+50}_{-40}$$
 fs

Very old literature values (1971) $\tau = 70(26)$ fs $\tau = 117(26)$ fs

TEST of KNOWN long lifetime in the region

τ

<u>394</u>5

3231

3153

2779

2371

1471

TEST of KNOWN Lifetimes in the 100s femtoseconds region

 $5/2^{-}$

OUR Case of interest – ²⁰O

 $^{18}O(7 MeV/A) + ^{181}Ta target (6 mg/cm²)$

 $\tau = 150^{+80}_{-30}$ fs

Literature $E\gamma = 2395(1) \text{ keV}$

OUR Case of interest – ¹⁶C

Literature $E\gamma = 2217(2)$ keV

Results

calculations which include three-nucleon forces (calculation employing only NN interaction are NOT satisfactory).

Partial lifetimes, with branching taken into account.

NCSM: C. Forssén, et al., J. Phys. G: Nucl. Part. Phys. 40, 055105 (2013). NN:D.R. Entem and R. Machleidt, Phys. Rev. C 68, 041001(R) (2003); J. Simonis, et al., Phys. Rev. C 93, 011302(R) (2016).

Perspective for future: ¹⁶C

In 2019 LoI was presented on AGATA@LNL for stable beams workshop:

M. Ciemała, B. Fornal, S. Leoni, et al. "Lifetime measurements of excited states in neutron-rich C isotopes" for furthcoming AGATA campaign at Legnaro National Laboratory, Italy.

Setup: PRISMA, AGATA and PARIS

Target: ¹⁹⁸Pt, beam ¹⁸O

AGATA – Lifetimes of the second 2⁺ states: by Doppler Shift Attenuation.

PARIS - high energy g, branches from the second 2⁺ state to the ground state and to the first 2⁺ state (3979 keV in ¹⁶C).

PRISMA – Ion identification, measurement of velocity vector.

One of the physics cases for AGATA white book:

Korten, W., Atac, A., Beaumel, D. et al. Physics opportunities with the Advanced Gamma Tracking Array: AGATA. Eur. Phys. J. A 56, 137 (2020).

Papers published/in preparation:

1. M. Ciemała, S. Ziliani, F.C.L. Crespi, S. Leoni, B. Fornal, A. Maj, et al., "Testing ab initio nuclear structure in neutron-rich nuclei: Lifetime measurements of second 2⁺ state in ¹⁶C and ²⁰O", Phys. Rev. C 101, 021303(R), 2020. 2. M. Ciemała, S. Ziliani, F.C.L. Crespi, S. Leoni, B. Fornal, A. Maj, et al., " Accessing tens-tohundreds femtoseconds nuclear state lifetimes with low-energy binary heavy-ion r submitted to EPJA (description of the method) *https://arxiv.org/abs/2012.05180* ra sil jądrowych 3. S. Ziliani, M. Cimała, F.C.L. Crespi, S. Leoni, B. Fornal, et al. "Complete spect negative-parity states in ¹⁸N[°] (in preparation)

Proceedings:

. . . .

. . . .

2. S. Ziliani et al., Acta Phys 3. M. Ciemała et al., Acta P 4. S. Ziliani et al., Acta Phys 5. S. Ziliani, Il Nuovo Cimer

1. M. Ciemała et al., Acta Phys. Pol B 50(2019), No. 3. 615 **© EurekAlert!** MAAAS

NEWS RELEASE 26-IUN-2020

The nature of nuclear forces imprinted in photons

NEWODNICZANSKI INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEN

ABOI

Conclusions

- Tested experimentally the impact of the NNN interactions to nuclear structure observables.
- Novel method, together with the most sophisticated experimental setup, lead to the first lifetime measurement of second 2⁺ in ²⁰O: 150 fs, fully consistent with *ab initio* calculations including three body interactions.
- Extracted estimates of lifetime of second 2⁺ in ^{16}C : it depends on non-shifted gamma-ray energy \rightarrow new measurement is needed.
- Developed Experimental approach essential for short lifetime measurements in unexplored regions of the nuclear chart, with future intense beams, produced by Isotope Separation On-Line (ISOL) techniques.
- This technique, exploiting EM decays, is new and complementary to other techniques of 3N interaction studies.
- Our work significantly broadens the possibilities for nuclear structure high-precision measurements in hard-to-reach exotic systems.

Acknowledgements

S. Leoni, S. Ziliani, F.C.L. Crespi, G. Benzoni, A. Bracco, C. Boiano, S. Bottoni, S. Brambilla, F. Camera, S. Coelli, B. Million, O. Wieland University and INFN Milano, Italy M. C., B. Fornal, A. Maj, P. Bednarczyk, Ł.W. Iskra, N. Cieplicka-Oryńczak, J. Grebosz, M. Kmiecik, K. Mazurek, B. Wasilewska Institute of Nuclear Physics, PAN, Poland E. Clément, G. De France, B. Jacquot, Y. Kim, A. Lemasson, M. Lewitowicz, H. Li, M. Rejmund - GANIL, CEA/DSAM and CNRS/IN2P3, France

M. Bast, M. Beckers, T. Braunroth, C. Fransen, A. Goldkuhle, C. Muller-Gatermann- IKP Cologne, Germany O. Dorvaux, Ch. Schmitt - CNRS/IN2P3, IPHC UMR 7178, France S. Erturk - Nigde University, Turkey **M.N. Harakeh** - KVI - Center for Advanced Radiation Technology, Groningen, Netherlands A. Karpov - JINR. Dubna, Russia AGATA M. Kicińska-Habior - Faculty of Physics, Warsaw University, Poland S.M. Lenzi - Padova University and INFN, Italy PARIS I. Matea, I. Stefan - IPN Orsay Laboratory, Orsay, France **C. Michelagnoli** - Institut Laue-Langevin (ILL), Grenoble, France VAMOS M. Matejska-Minda, P. Napiorkowski - Heavy Ion Laboratory, University of Warsaw, Poland V. Nanal, R. Palit - Tata Institute of Fundamental Research, Mumbai, India **Collaborations D.R. Napoli** - INFN Laboratori Nazionali di Legnaro, Italy M. Stanoiu - IFIN-HH, Bucharest, Romania E. Vardaci - Università degli Studi di Napoli and INFN sez. Napoli, Italy **M. Zielińska** - IRFU, CEA/DRF, Centre CEA de Saclay, F-91191 Gif-sur-Yvette Cedex, France J. Holt - TRIUMF, Vancouver, Canada **J. Menendez** - Center for Nuclear Study, University of Tokyo, Japan **A. Schwenk** - TU Darmstadt, ExtreMe Matter Institute EMMI, GSI, Darmstadt and Max-Planck-Institut für Kernphysik, Heidelberg, Germany - Institut fur Kernphysik and PRISMA Cluster of Excellence, Mainz University, Germany J. Simonis

Italian-Polish-French collaboration and AGATA+VAMOS+PARIS setup allowed successful experiment at GANIL.