Machine learning applications in subatomic physics

Artur Kalinowski Faculty of Physics University of Warsaw

Machine Learning

mite

mite

tick

starfish

black widow

cockroach

What is a Machine Learning (ML)? Machine learning is a statistical analysis with complex and automatized methods.

• a main assumption is that a problem can be formulated as a quest for some probability distribution p(x), $\dot{x} - a$ input data

•machine learning development is mainly driven by so called "Data Mining" or "Big data": attempts to analyze large data sets available to "industry" in order to infer any possible knowledge

- image recognition is one of main applications driving ML development
- other driver is a NLP: <u>Natural Language</u> Processing

Machine learning applications in subatomic physics

go-kart

moped

golfcart

bumper car

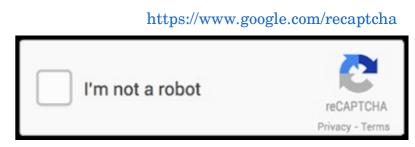
			-571
ImageNet	Classification with Deep	Convolutional Neural Ne	tworks (AlexNet 2012)

container ship

drilling platform

lifeboat amphibian

fireboat



iaguar

cheetah

snow leopard

Egyptian cat

A neuron

(Artificial) Neural Network (ANN): • invented in 1957

•a system of connected units, neurons, performing averaging of input variables to obtain a number of output values

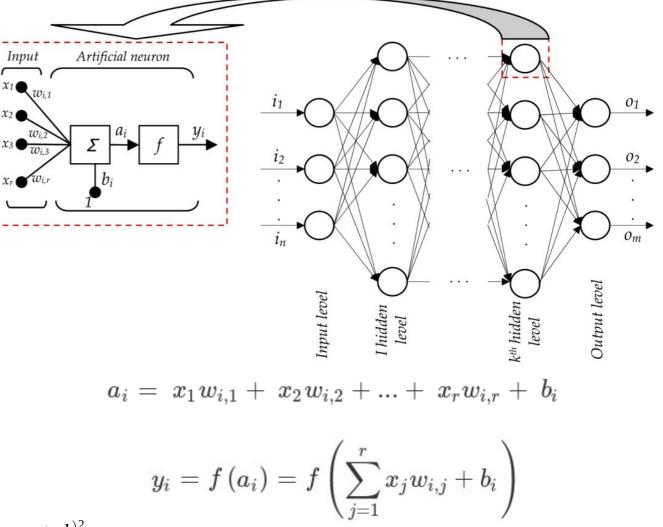
• averaging is performed at each neuron using a set of weights for its inputs, and "activation function"

• **training** – process of finding the parameters minimizing some loss function: **f(output, expected value)**

often f(...) is a MSE: mean square error:

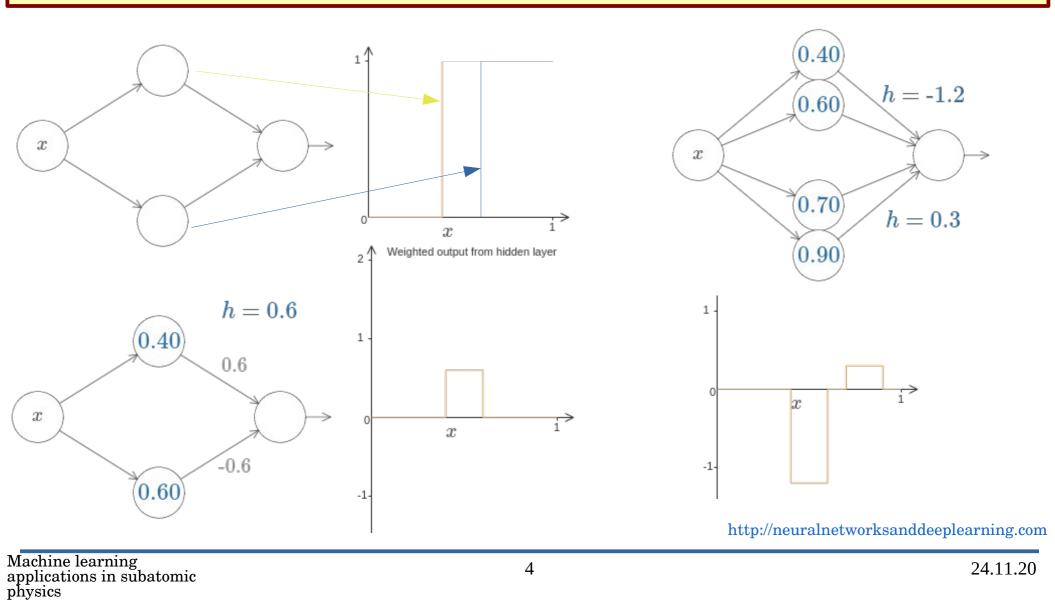
$$f(output, expected value) = \frac{1}{N} \sum (output - expected)^2$$

Artificial Intelligence Techniques for Modelling of Temperature in the Metal Cutting Process

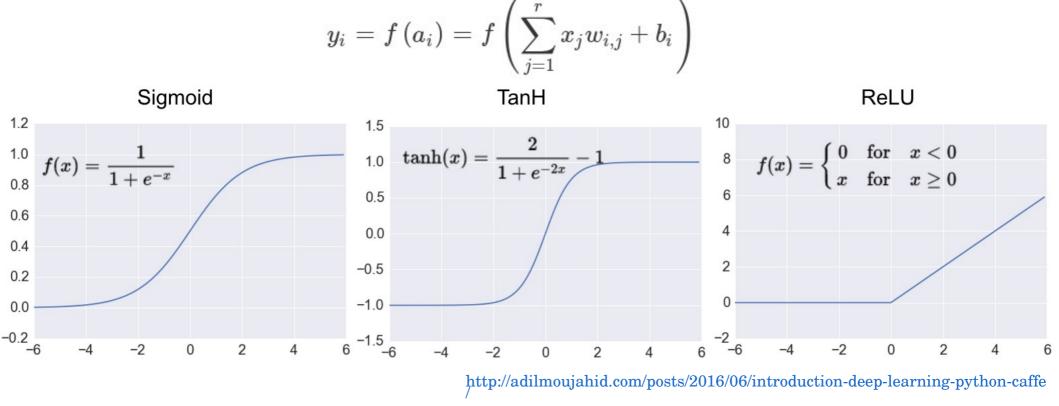


Neural Network approximator

The universal approximation theorem: any smooth function can be approximated with a NN with a single hidden layer with finite number of neurons.



Deep Learning advent



Activation function:

• Rectified Linear Unit (ReLU): nowadays a most common activation function.

More computing power:

• Graphical Processing Units (GPUs) provide up to 100x faster training

More training data:

• Big memory, big CPU, big GPU allows use of BIG training datasets

A regression

Reggression: instead for looking for a full p(x), x - a input data, one seeks only a mean or median of p(x)

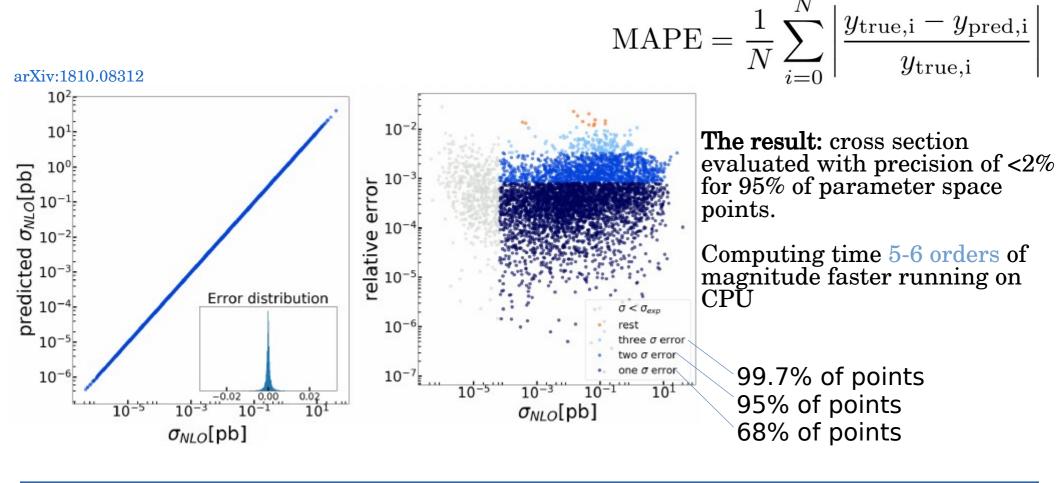
The task: calculate NLO cross section for a MSSM process for any, out of 19, parameter value. The current NLO codes (Prospino) take O(3') to calculate $\sigma(pp \rightarrow \tilde{\chi}^+ \tilde{\chi}^-)$ The neural network was used to parametrise NLO cross sections from Prospino in pMSSM-19.

The data: 10⁷ points in dim=19 parameter space of LO an 10⁵ of NLO cross sections

A regression model

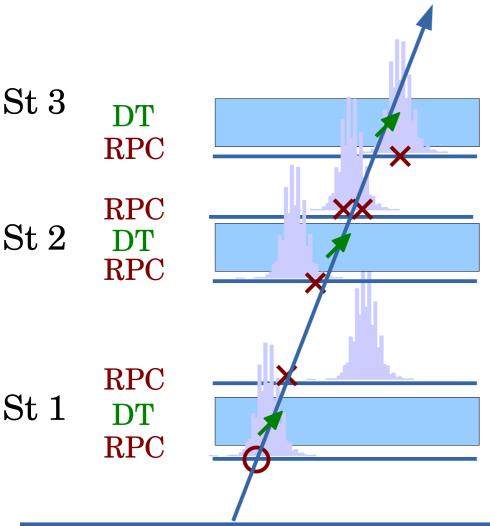
K. Rolbiecki (IFT UW) et. al.

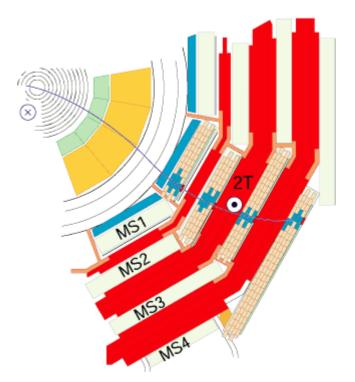
The model: 8 hidden layers with 100 neurons each for LO parametrisation 8 hidden layers with 32 neurons each for NLO/LO k-factor parametrisation Loss function: Mean Absolute Percentage Error:



CMS@Warsaw ML activities: OMTF

The task: use a NN model to reconstruct p_T at the CMS level 1 muon trigger





• current algorithm (naive Bayes approximation): given hit pattern, choose a p_T that maximizes the sum of hit probabilities in each layer. Neglects any interlayer correlations

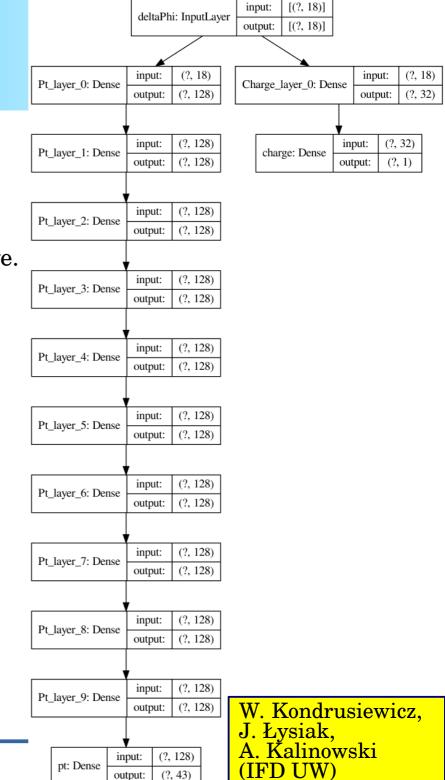
OMTF NN model

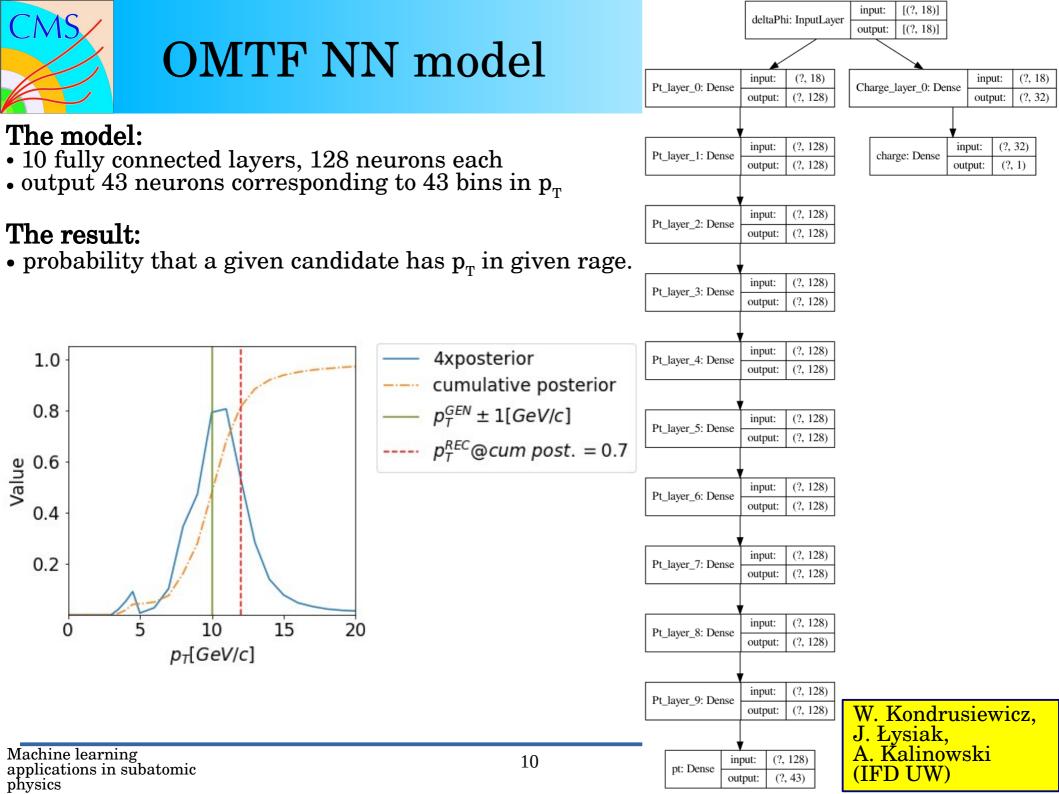
The model:

- 10 fully connected layers, 128 neurons each
 output 43 neurons corresponding to 43 bins in p_T

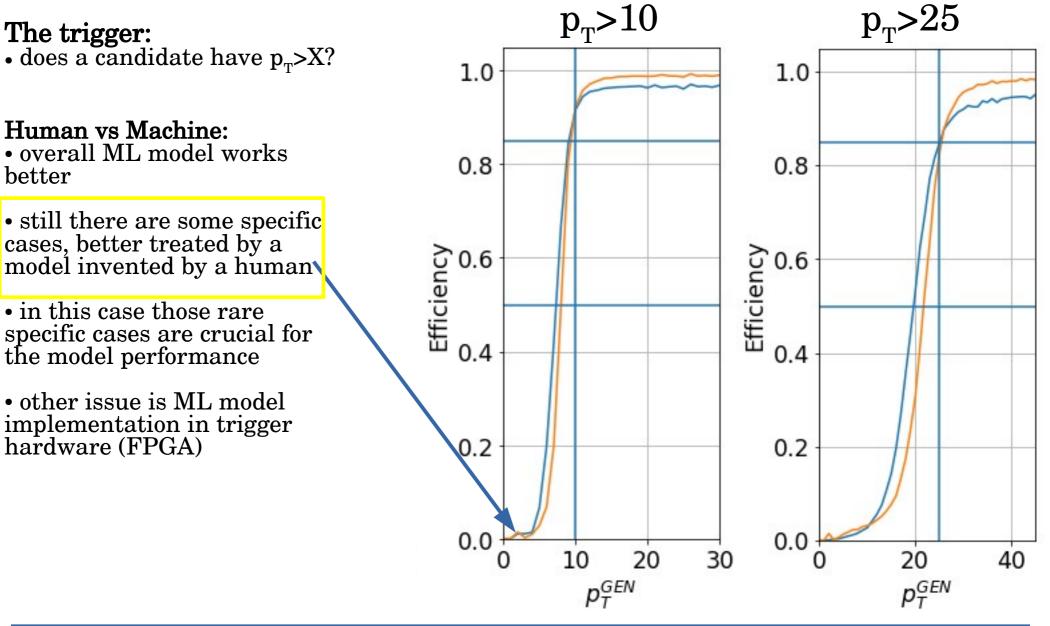
The result:

- probability that a given candidate has $p_{\scriptscriptstyle T}$ in given rage.



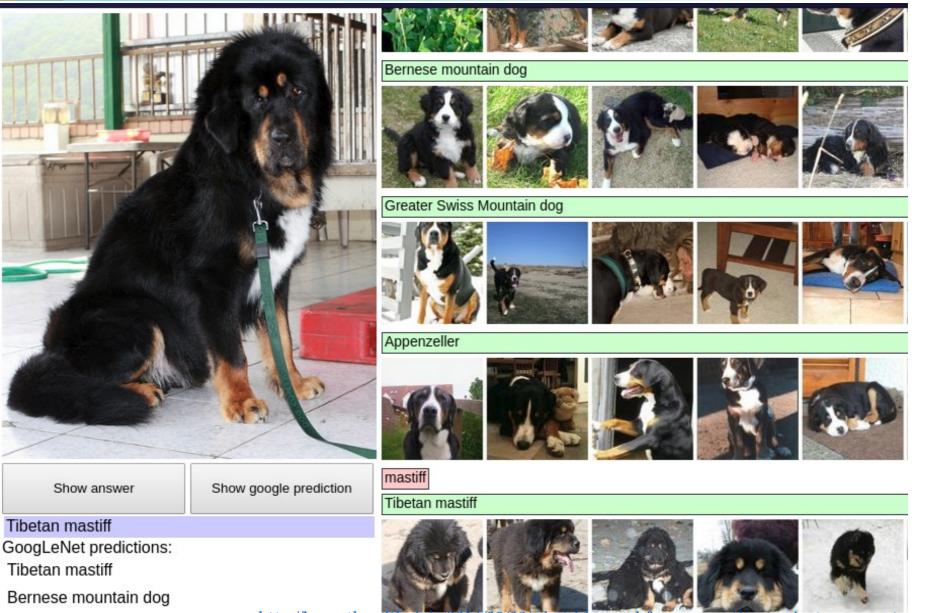


OMTF NN model



A categorisation task

lk categories



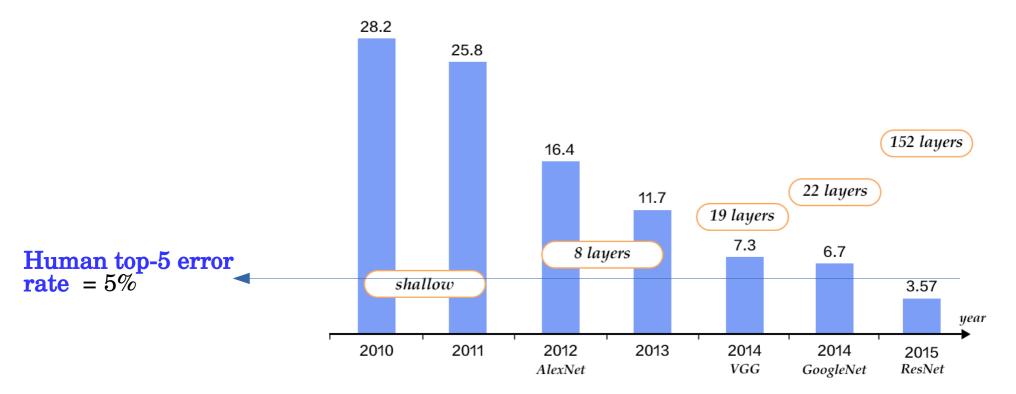
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

Machine learning applications in subatomic physics

Deep Learning

ImageNet is a data set for Large Scale Visual Recognition Challenge (ILSVRC) started in 2010

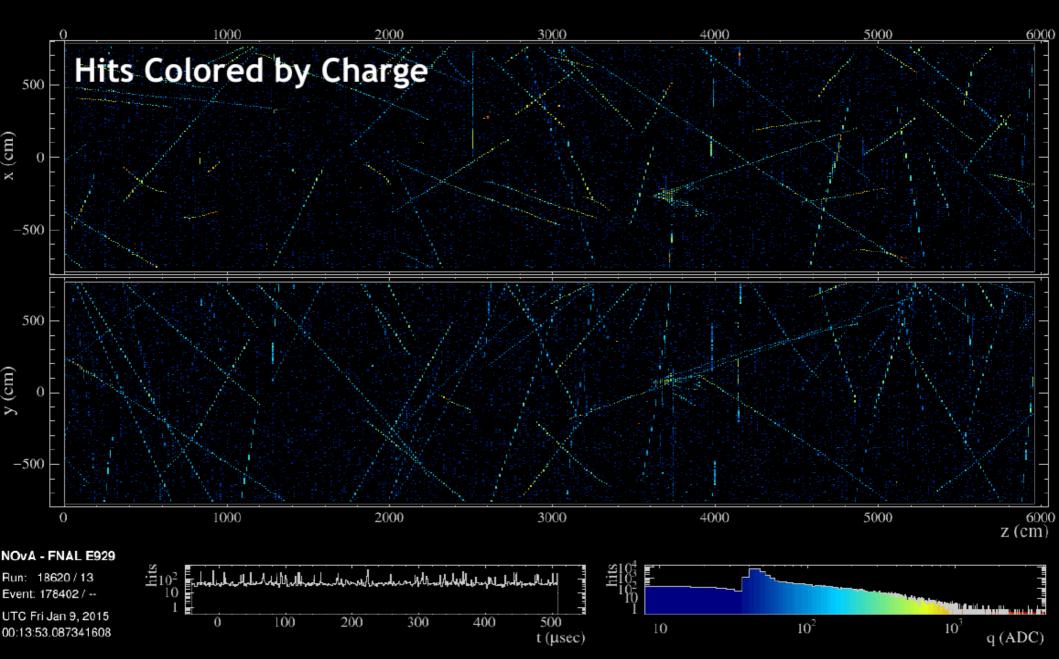
top-5 error rate – fraction of images where the correct label in not within 5 most probable (according to DNN)

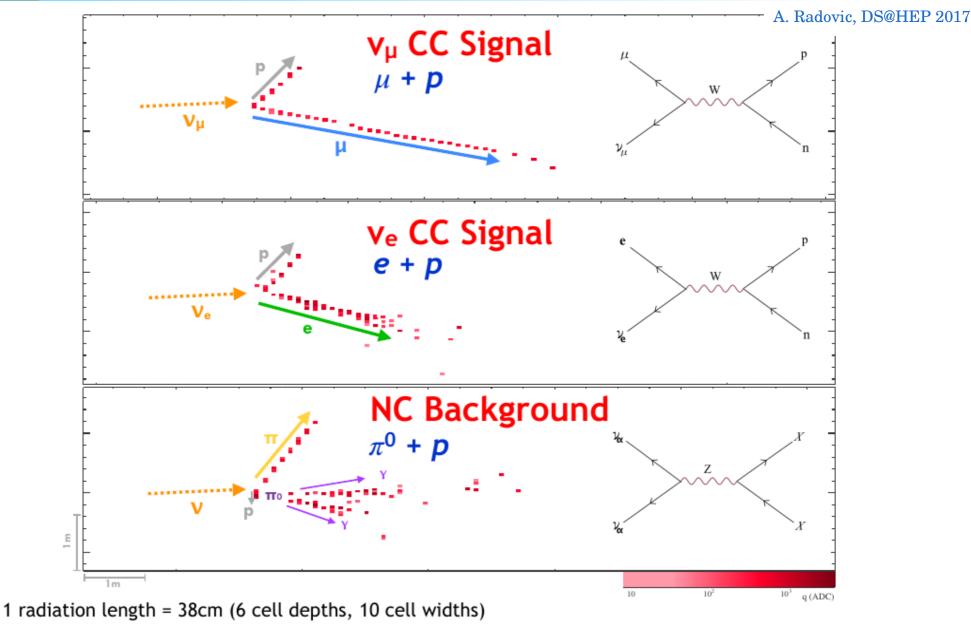


 $http://book.paddlepaddle.org/03.image_classification/$

550 μ s exposure of the NOvA Far Detector

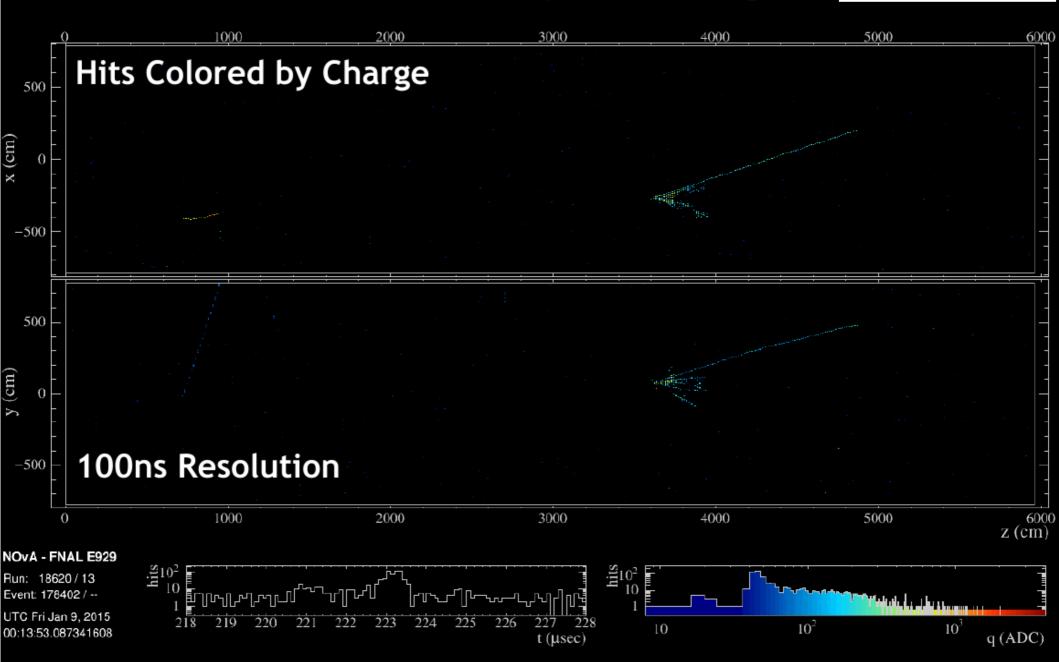
A. Radovic, DS@HEP 2017



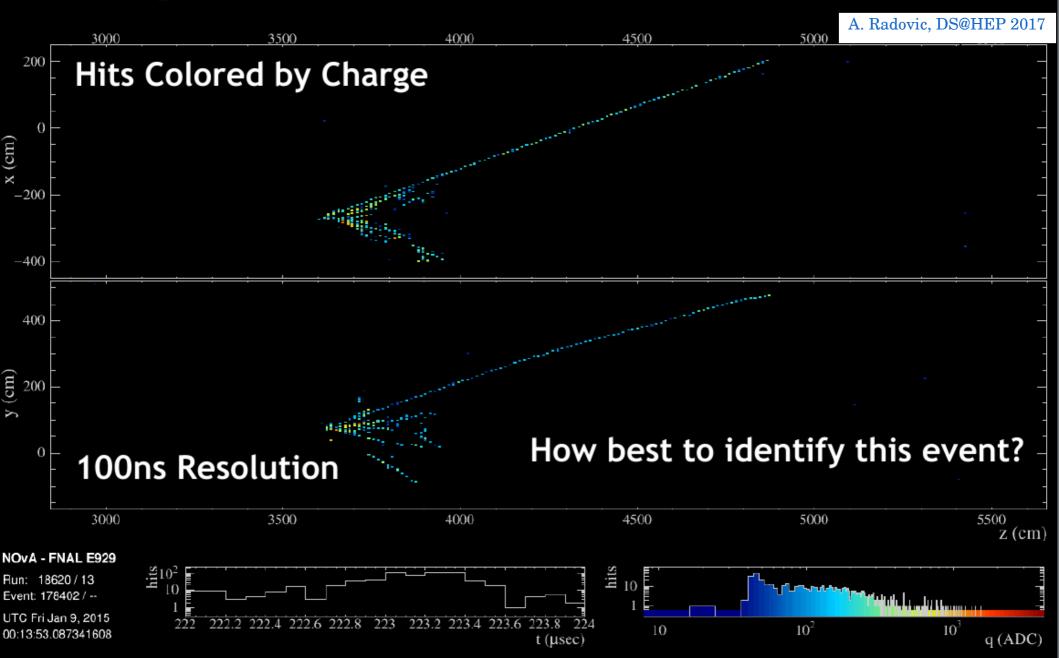


Time-zoom on 10 μ s interval during NuMI beam pulse

A. Radovic, DS@HEP 2017



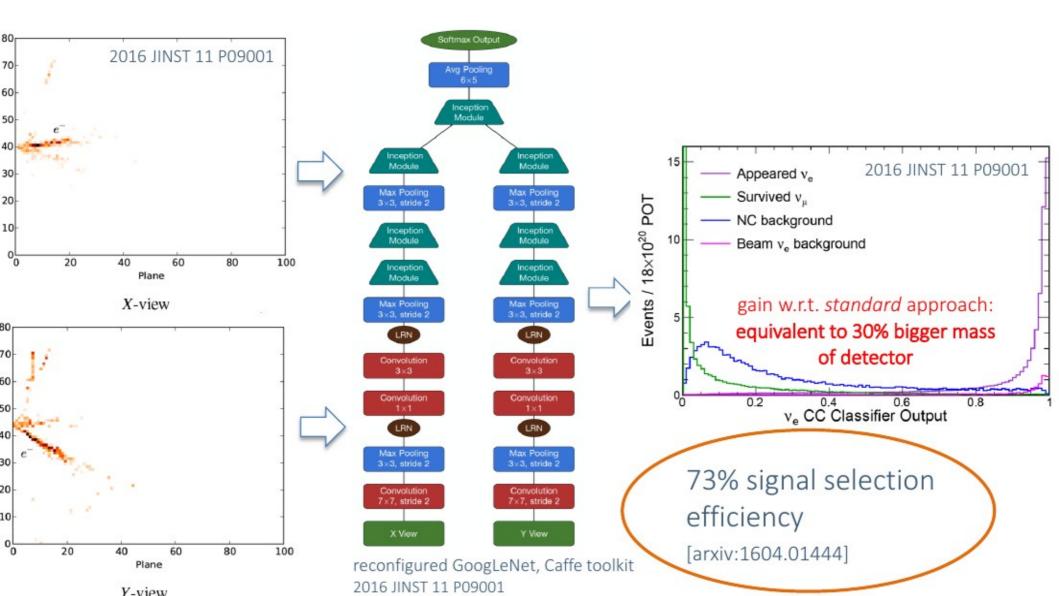
Close-up of neutrino interaction in the NOvA Far Detector



CNN applied to $\nu_{\rm e}$ selection in NOvA

R. Sulej, CERN-EP/IT Data science seminar

Input: image-like raw charge in 2D projections (NOvA),



DNN in nuclear physics

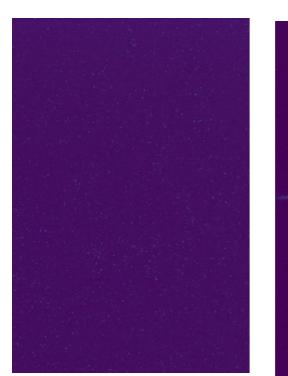
The data: 3 ·10⁶ nuclear reaction photos from an TPC with optical readout (OTPC)

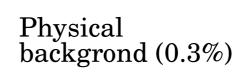
Calibration

source (2%)

The task: assign one of five labels to a photo:

Empty (97%)





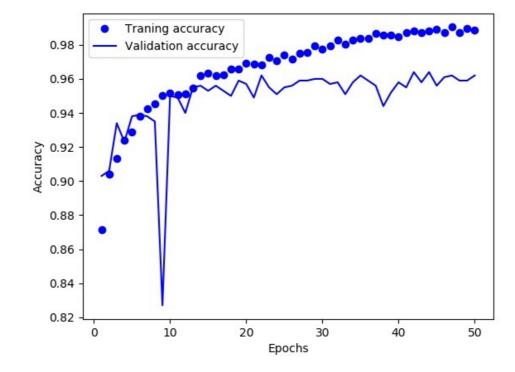
Signal (0.2%)

Machine learning applications in subatomic physics

N. Sokołowska

IFD UW)

A preliminary result: 96% events with correct category assignment

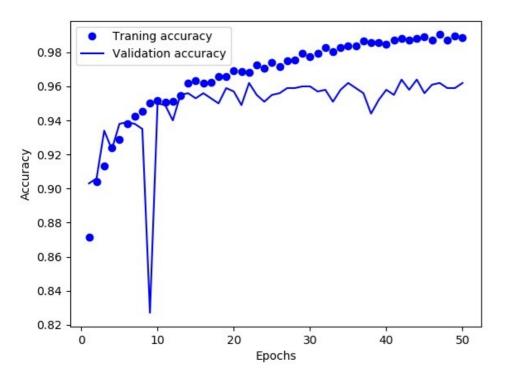


A small font note: 97% of events belong to the "empty" category.

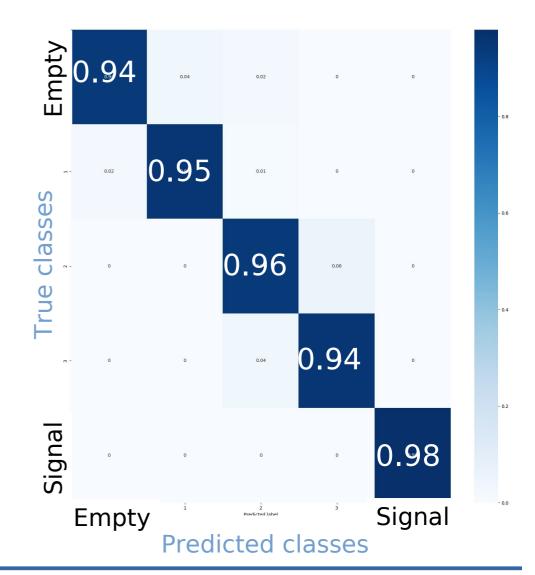
N. Sokołowska

IFD UW)

A preliminary result: 96% events with correct category assignment



Confusion matrix – visualisation of true class predicted class correspondence



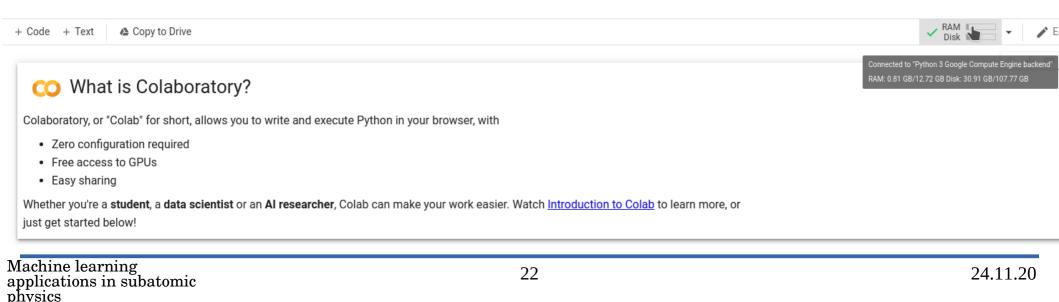
How to get started?

The software: many packages available on the market, all use Python. I use TensorFlow from Google. Many, large pretrained networks are available there:

Transfer learning with a pretrained ConvNet

In this tutorial, you will learn how to classify images of cats and dogs by using transfer learning from a pre-trained network.

The hardware: one can start with just a bare web browser and use cloud resources from Google: the Google Colaboratory:



How to get started?

A small training: for not too big network, with ~1M parameters the GPUs do not give too much speedup wrt. a fast CPU. For an everyday work I just use my desktop: Core i7 2700, 16 GB RAM, no GPU

A large training: for a serious training one can use the PLGrid infrastructure. Requires registration and application for a computing grant. The service is free for all members of Polish scientific community.

At the moment $\ I$ use prometheus cluster (located at AGH) with NVIDIA K40 GPUs:

	2160	2	12	24	Intel Xeon E5-2680 v3	2,5	128	5,33	haswell_2500mhz	
Prometheus	72	2	12	24	Intel Xeon E5-2680 v3	2,5	128	5,33	haswell_2500mhz,tesla_k40d	C0

Your active PL	-Grid grants	on THIS site:											
++	++			4	+	+			+			+	+
GrantID	Start Date	End Date	Total Walltime	[h]	Used Walltime [+	[h]	Total Storage	[GB]	Used	Storage	[GB]	Group	Ĩ
cmsml3 (*)	2020-01-19	2020-12-30		000	25	57		100			37	plggcmsm ⁻	ιj

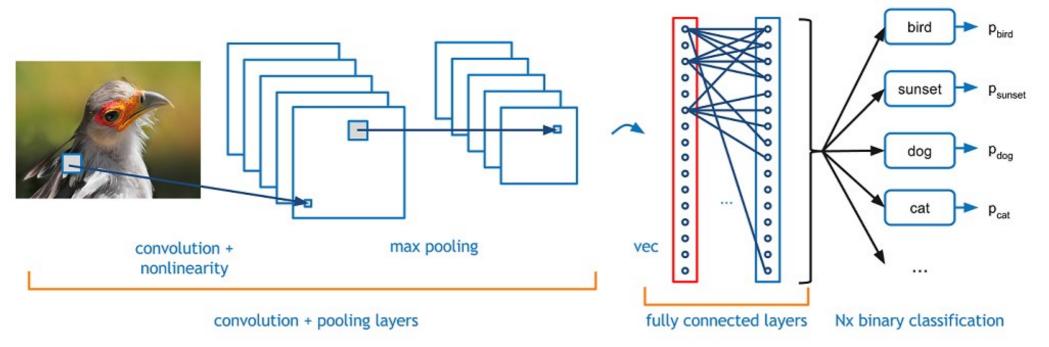
Conclusions

- Machine learning had made a huge development in last 5 years
- Ideas from industry are being extensively used within science
- ML is the cutting edge of statistical data analysis (though not always as conscious as traditional approach)

Backup

A categorisation model

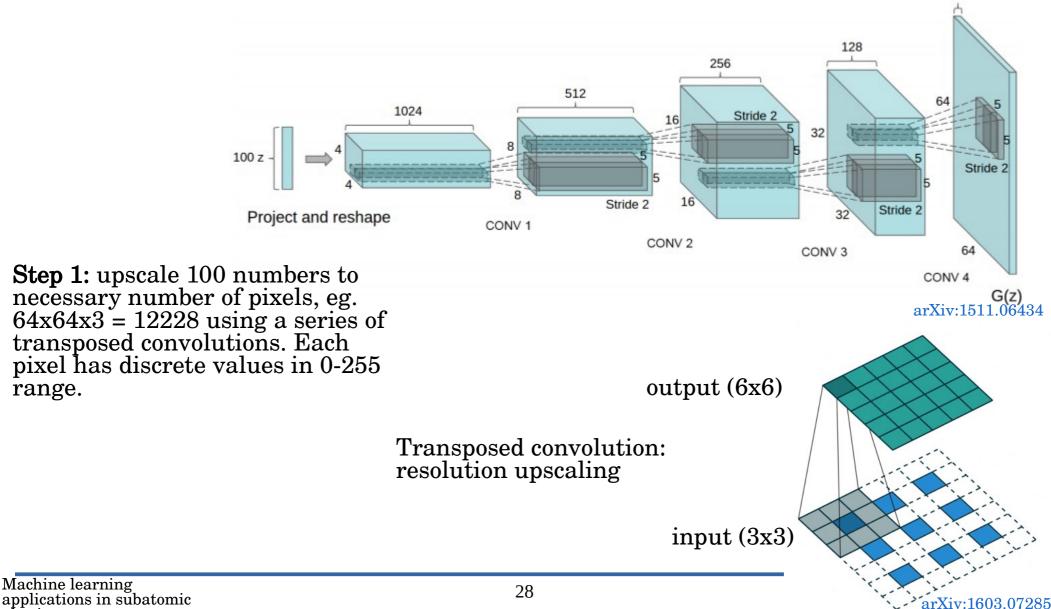
https://adeshpande3.github.io/A-Beginner%27 s-Guide-To-Understanding-Convolutional-Neural-Networks/Neural-Neural



- a typical network (usually called a model) trained for image recognition consists of number of interleaved layers of convolution and pooling → extraction of higher and higher level features
- final layers are responsible for decision making using the identified features

The task: code an RGB image as a point in R^{100} , then generate new images by drawing random points in R^{100} .

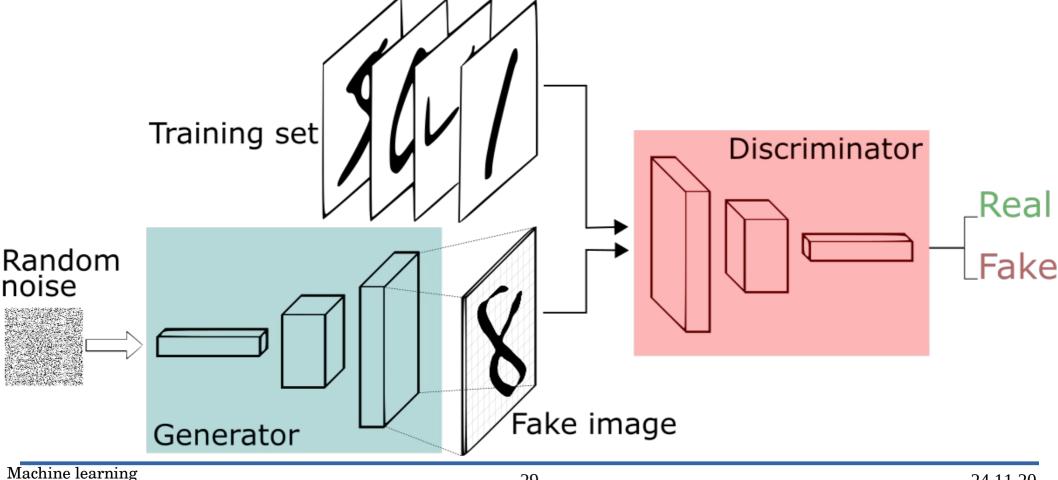
The task: code an RGB image as a point in R^{100} , then generate new images by drawing random points in R^{100} .



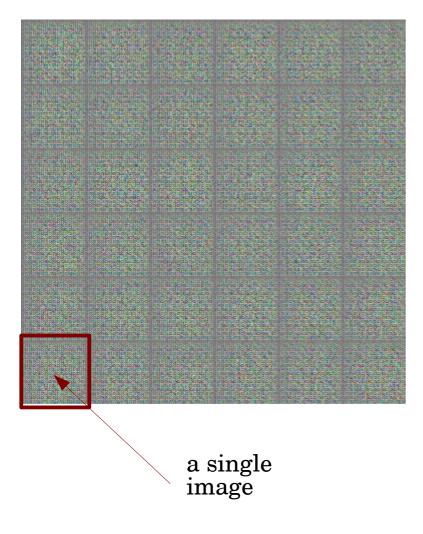
physics

- **Step 2:** find mapping (= convolutions weights) from R^{100} to a subspace of R^{12228} . Use two adversarial networks:

 - G generator making an image from random noise D discriminator deciding if an image is real or generated

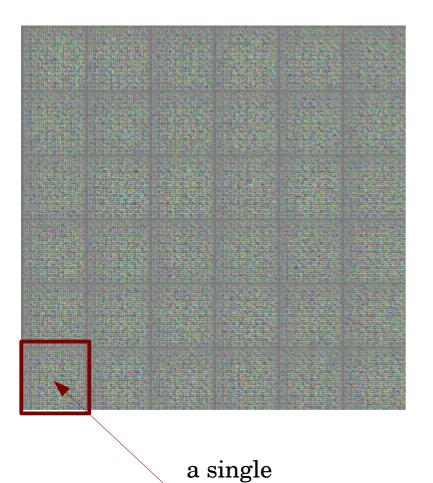


Starting point: random noise images generated by G



http://www.timzhangyuxuan.com/project_dcgan

Starting point: random noise images generated by G



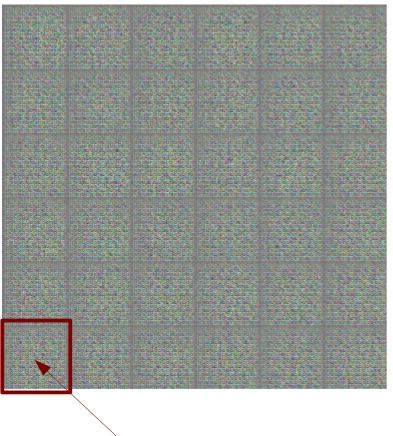
image

Epoch 150: 150 times transverse library of 200k real human face images.



http://www.timzhangyuxuan.com/project_dcgan

Starting point: random noise images generated by G



a single image

Epoch 16500: 16500 times transverse library of 200k real human face images.

http://www.timzhangyuxuan.com/project_dcgan

Recent advance: progressive GAN – generate high resolution images by iterative resolution increase of generated image during the training process **Number of parameters:** 23.1M in Generator and Discriminator networks respectively **Training time:** 4 days on 8 Tesla V100 GPUs (single GPU cost: 50k PLN).

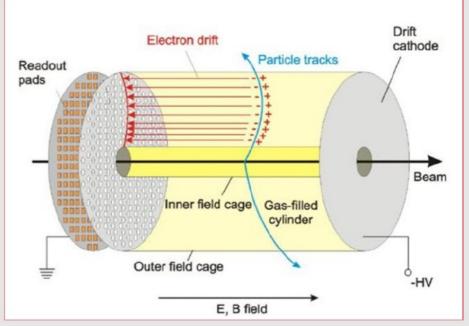
2017 1024x1024

arXiv:1710.10196

Example: simulation of particle passage through a detector: here ALICE TPC (work by group from the Warsaw University of Technology)

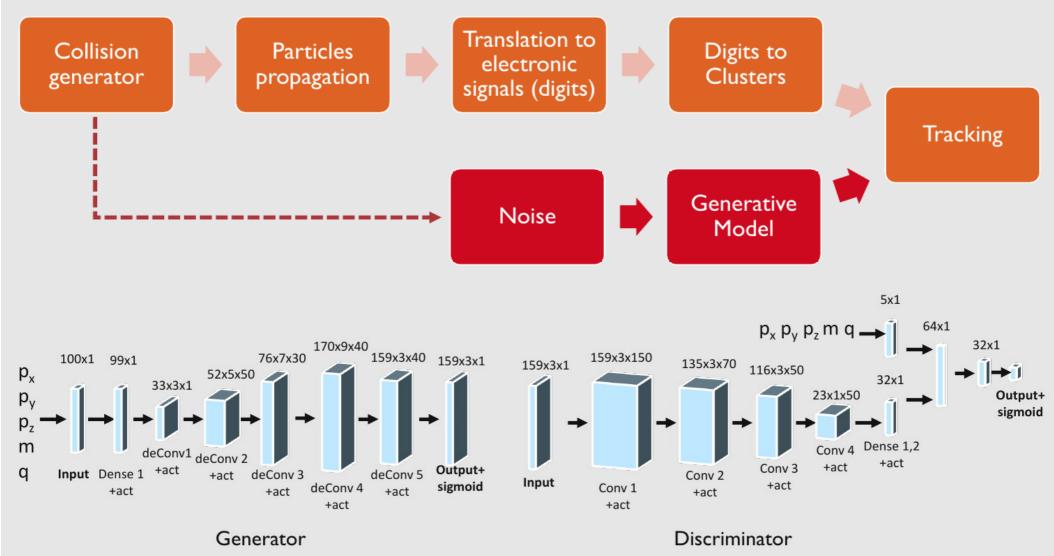
Particle clusters in TPC

- Points in 3-dimensional space, together with the energy loss, which were presumably generated by a particle crossing by.
- Input for particle tracks generation
- Up to 159 points per particle
- Possible values restricted by the detector size ~ 5m x 5m x 5m
- No clusters in the inner field cage



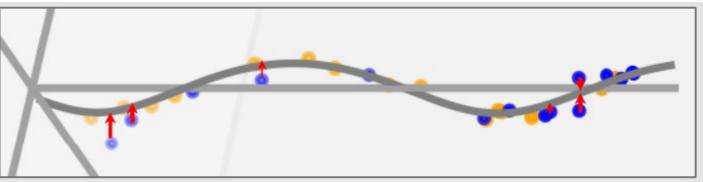
I.Konorov, Front-end electronics for Time Projection chamber

The idea: substitute time consuming full Geant 4 simulation by a GAN trained to generate "track images" = 100 + 4 dimensional paramatrisation of Geant4 output



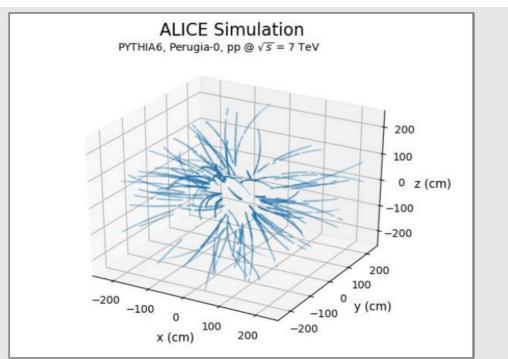
Quality criterion: mean square distance between generated hits and an ideal helix.

MSE visualisation: Red - error Grey- ideal helix Orange – original clusters Blue – generated clusters

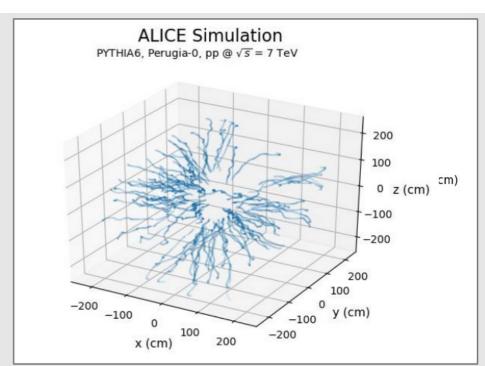


Speed increase: factor 25 for running GAN on CPU. Expected factor 250 for running on GPU

Method	Mean MSE (mm)	Median MSE (mm)	Speed-up		
GEANT3	1.20	1.12	I		
Random (estimated)	2500	2500	N/A		
condLSTM GAN	2093.69	2070.32	100		
condLSTM GAN+	221.78	190.17	100		
condDCGAN	795.08	738.71	25		
condDCGAN+	136.84	82.72	25		



Original event



Generated event