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Machine Learning 
What is a Machine Learning (ML)?
Machine learning is a statistical analysis with 
complex and automatized methods.

 
● a main assumption is that a problem can be 
formulated as  a quest for some probability 
distribution p(x), x – a input data

●machine learning development is mainly 
driven by so called  “Data Mining” or “Big 
data”: attempts to analyze large data            
sets available to “industry” in order to                 
infer any possible knowledge

● image recognition is                                          
one of main applications                             
driving ML  development

● other driver is a NLP: 
Natural Language 
Processing

https://www.google.com/recaptcha

ImageNet Classification with Deep Convolutional Neural Networks  (AlexNet 2012)

https://www.google.com/recaptcha
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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A neuron 
(Artificial) Neural Network 
(ANN): 
● invented in 1957

●a system of connected units, 
neurons, performing averaging 
of input variables to obtain a 
number of output values

● averaging is performed at each 
neuron using a set of weights for 
its inputs, and “activation 
function” 

● training – process of finding 
the parameters minimizing 
some loss function: 
f(output, expected value)

often f(...) is a MSE: mean 
square error:

Artificial Intelligence Techniques for Modelling of Temperature in the Metal Cutting Process

f (output , expected value)=
1
N
∑ (output−expected )2

https://www.intechopen.com/books/howtoreference/metallurgy-advances-in-materials-and-processes/artificial-intelligence-techniques-for-modelling-of-temperature-in-the-metal-cutting-process
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Neural Network approximator 

The universal approximation theorem: any smooth function can be approximated with a 
NN with a single hidden layer with finite number of neurons.

http://neuralnetworksanddeeplearning.com

http://neuralnetworksanddeeplearning.com/
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Deep Learning advent 

Activation function: 
● Rectified Linear Unit (ReLU):  nowadays a most common activation function.

More computing power: 
● Graphical Processing Units (GPUs) provide up to 100x faster training

More training data: 
● Big memory, big CPU, big GPU allows use of BIG training datasets
 

http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe
/

http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/
http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/
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Reggression: instead for  looking for a full p(x), x – a input data, one seeks only a mean or 
median of p(x)

The task: calculate NLO cross section for a MSSM process for any, out of 19, parameter value. 

The current NLO codes (Prospino) take O(3’) to calculate                      .       

The neural network was used to parametrise NLO cross sections from Prospino in pMSSM-19.

The data: 107 points in dim=19 parameter space of LO an 105 of NLO cross sections

σ( pp→~χ
+~χ

−
)

 K. Rolbiecki (IFT UW) et. al.

A regression 
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The model: 8 hidden layers with 100 neurons each for LO parametrisation

                     8 hidden layers with 32 neurons each for NLO/LO k-factor parametrisation

                     Loss function: Mean Absolute Percentage Error:

arXiv:1810.08312

The result: cross section 
evaluated with precision of <2% 
for 95% of parameter space 
points.

Computing time 5-6 orders of 
magnitude faster running on 
CPU

 K. Rolbiecki (IFT UW) et. al.

A regression model 

99.7% of points
95% of points
68% of points

https://arxiv.org/abs/1810.08312
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 CMS@Warsaw ML activities: OMTF 
The task: use a NN model to reconstruct 

p
T
 at the CMS level 1 muon trigger 

RPC

RPC

RPC

RPC

RPC

DT

DT

DT

St 1

St 2

St 3

● current algorithm (naive Bayes 

approximation): given hit pattern, choose a p
T 

that maximizes the sum of hit probabilities in 

each layer. Neglects any interlayer 

correlations



Machine learning 
applications in subatomic 
physics

24.11.209

 
The model:
● 10 fully connected layers, 128 neurons each
● output 43 neurons corresponding to 43 bins in p

T
 

The result:
● probability that a given candidate has p

T
 in given rage.

OMTF NN model 

W. Kondrusiewicz, 
J. Łysiak,
A. Kalinowski 
(IFD UW)
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The model:
● 10 fully connected layers, 128 neurons each
● output 43 neurons corresponding to 43 bins in p

T
 

The result:
● probability that a given candidate has p

T
 in given rage.

OMTF NN model 

W. Kondrusiewicz, 
J. Łysiak,
A. Kalinowski 
(IFD UW)
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 OMTF NN model 

The trigger:
● does a candidate have p

T
>X?

Human vs Machine:
● overall ML model works 
better

● still there are some specific 
cases, better treated by a 
model invented by a human

● in this case those rare 
specific cases are crucial for 
the model performance

● other issue is ML model 
implementation in trigger 
hardware (FPGA)

p
T
>10 p

T
>25
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A categorisation task 

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
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http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/


Machine learning 
applications in subatomic 
physics

24.11.2013

Deep Learning 

http://book.paddlepaddle.org/03.image_classification/

ImageNet is a data set for Large Scale Visual Recognition Challenge (ILSVRC) started 

in 2010

top-5 error rate – fraction of images where the correct label in not within 5 most 

probable (according to DNN) 

Human top-5 error 
rate  = 5% 

http://book.paddlepaddle.org/03.image_classification/


Machine learning 
applications in subatomic 
physics

24.11.2014

DNN in neutrino physics  
A. Radovic, DS@HEP 2017

https://indico.fnal.gov/getFile.py/access?contribId=17&sessionId=1&resId=0&materialId=slides&confId=13497
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DNN in neutrino physics  
A. Radovic, DS@HEP 2017

https://indico.fnal.gov/getFile.py/access?contribId=17&sessionId=1&resId=0&materialId=slides&confId=13497
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DNN in neutrino physics  
A. Radovic, DS@HEP 2017

https://indico.fnal.gov/getFile.py/access?contribId=17&sessionId=1&resId=0&materialId=slides&confId=13497
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DNN in neutrino physics  

A. Radovic, DS@HEP 2017

https://indico.fnal.gov/getFile.py/access?contribId=17&sessionId=1&resId=0&materialId=slides&confId=13497
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DNN in neutrino physics  
R. Sulej, CERN-EP/IT Data science seminar

https://indico.cern.ch/event/652660/
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DNN in nuclear physics  
 N. Sokołowska
(IFD UW)

The data: 3 ·106 nuclear reaction photos from an TPC with optical 

   readout (OTPC)

The task:  assign one of five labels to a photo:

Empty (97%) Calibration 
source (2%)

Physical 
backgrond (0.3%) Signal (0.2%)
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DNN in nuclear physics  

A preliminary result:  96% events with correct category assignment 

A small font note:  97%  of events belong to the “empty” category. 

 N. Sokołowska
(IFD UW)
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DNN in nuclear physics  
 N. Sokołowska

A preliminary result:  96% events with correct category assignment 
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How to get started?  
The software:  many packages available on the market, all use Python. I use TensorFlow  

from Google.  Many, large pretrained networks are available there:

The hardware: one can start with just a bare web browser and use cloud resources from 

Google: the Google Colaboratory:

http://tensorflow.org/
https://colab.research.google.com/
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How to get started?  

A large training:  for a serious training one can use the PLGrid infrastructure. Requires 

registration and application for a computing grant. The service is free for all members of  

Polish scientific community.

At the moment  I use prometheus cluster (located at AGH) with NVIDIA K40 GPUs:

A small training:  for not too big network, with ~1M parameters the GPUs do not give too 

much speedup wrt. a fast CPU. For an everyday work I just use my desktop: 

Core i7 2700, 16 GB RAM, no GPU 

http://www.plgrid.pl/
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● Machine learning had made a huge development in last 5 

years 

● Ideas from industry are being extensively 

used within science 

● ML is the cutting edge of  statistical 

data analysis (though not always as 

conscious as traditional approach)  

Conclusions 

https://xkcd.com/1838/

https://xkcd.com/1838/


Backup 
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A categorisation model 

● a typical network (usually called a model) trained for image recognition consists of 
number of interleaved layers of convolution and pooling  extraction of higher and higher →
level features
● final layers are responsible for decision making using the identified features 

https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
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GAN: Generative Adversarial Networks  
The task: code an RGB image as a point in R100, then generate new images by drawing           
                random points in R100. 
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GAN: Generative Adversarial Networks  
The task: code an RGB image as a point in R100, then generate new images by drawing           
                random points in R100. 

input (3x3)

output (6x6)

Transposed convolution: 
resolution upscaling

Step 1: upscale 100 numbers to 
necessary number of pixels, eg. 
64x64x3 = 12228 using a series of 
transposed convolutions. Each 
pixel has discrete values in 0-255 
range.

arXiv:1511.06434

arXiv:1603.07285

https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1603.07285
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GAN: Generative Adversarial Networks  

Step 2: find mapping (= convolutions weights) from R100 to a subspace of R12228.
Use two adversarial networks: 

              G – generator making an image from random noise
              D – discriminator deciding if an image is real or generated 
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GAN: Generative Adversarial Networks  

Starting point: random noise 
images generated by G

a single 
image

http://www.timzhangyuxuan.com/project_dcgan
/

http://www.timzhangyuxuan.com/project_dcgan/
http://www.timzhangyuxuan.com/project_dcgan/


Machine learning 
applications in subatomic 
physics

24.11.2031

GAN: Generative Adversarial Networks  

Starting point: random noise 
images generated by G

a single 
image

Epoch 150: 150 times transverse library 
of 200k real human face images.

http://www.timzhangyuxuan.com/project_dcgan
/

http://www.timzhangyuxuan.com/project_dcgan/
http://www.timzhangyuxuan.com/project_dcgan/
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GAN: Generative Adversarial Networks  

Starting point: random noise 
images generated by G

a single 
image

Epoch 16500: 16500 times transverse 
library of 200k real human face images.

http://www.timzhangyuxuan.com/project_dcgan
/

http://www.timzhangyuxuan.com/project_dcgan/
http://www.timzhangyuxuan.com/project_dcgan/
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GAN: Generative Adversarial Networks  

arXiv:1710.10196

2015 
64x64

2016 
64x64 2017 

128x128

2017 
1024x1024

Recent advance: progressive GAN – generate high resolution images by iterative                    
                           resolution increase of generated image during the training process
Number of parameters: 23.1M in Generator and Discriminator networks respectively
Training time: 4 days on 8 Tesla V100 GPUs (single GPU cost: 50k PLN). 

https://arxiv.org/abs/1710.10196
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GAN in simulations  

Example: simulation of particle passage through a detector: here ALICE TPC (work by 
group from the Warsaw University of Technology)

https://indico.cern.ch/event/587955/contributions/2937515/attachments/1683183/2707645/CHEP18.pdf

https://indico.cern.ch/event/587955/contributions/2937515/attachments/1683183/2707645/CHEP18.pdf
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GAN in simulations  

https://indico.cern.ch/event/587955/contributions/2937515/attachments/1683183/2707645/CHEP18.pdf

The idea: substitute time consuming full Geant 4 simulation by a GAN trained to generate 
“track images” = 100 + 4 dimensional paramatrisation of Geant4 output

https://indico.cern.ch/event/587955/contributions/2937515/attachments/1683183/2707645/CHEP18.pdf
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GAN in simulations  

https://indico.cern.ch/event/587955/contributions/2937515/attachments/1683183/2707645/CHEP18.pdf

Quality criterion: mean square distance between generated hits and an ideal helix.

Speed increase: factor 25 for running 
GAN on CPU. Expected factor 250 
for running on GPU

https://indico.cern.ch/event/587955/contributions/2937515/attachments/1683183/2707645/CHEP18.pdf
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GAN in simulations  

https://indico.cern.ch/event/587955/contributions/2937515/attachments/1683183/2707645/CHEP18.pdf

https://indico.cern.ch/event/587955/contributions/2937515/attachments/1683183/2707645/CHEP18.pdf
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