Study of neutron-rich isotopes with neutron-induced-fission reactions

Łukasz Iskra Institute of Nuclear Physics Polish Academy of Sciences (INFN sezione di Milano)

Kraków 23.11.2020

Outline:

Identification of the new level schemes in neutron-rich isotopes produced in fission reactions induced by thermal and fast neutrons

- Development of the reaction tag for fission experiments
 - Scintillator-based active target
 - Diamond- and SiC-based fission tag

> Lifetimes measurement of the states in neutron-rich isotopes by employing LOHENGRIN mass spectrometer

Study low-spin states in ⁶²Ni via two neutrons transfer reaction

Institut Laue-Langevin - ILL

A. Pipidis et al., PRC **72**, 064307 (2015)

R. Broda *et al.*, PRC **72**, PRC **101**, 064320 (2020)

Typical experimental setup and requirements

Pulsed beam (few ns width; hundreds ns repetition time)
 reaction tag

> Thick target (or backing) – doppler free detection

> Detectors :

- HPGe – discrete gamma-ray spectroscopy

- LaBr₃ – lifetimes measurement

v-ball campaign

Gamma spectroscopy HPGe

Lifetimes measurement

24 clover detectors10 large coaxial detectors

≥ 20 LaBr₃

pulsed beam with 400 ns repetition time

Laboratoire de Physique des 2 infinis Irène Joliot-Curie - IJCLab

Detailed Gamma Spectroscopy of ⁶²Ni: Searching for the onset of shape coexistence in neutron-rich Ni isotopes

MONTE CARLO SHELL MODEL Calculations (MCSM) - Takaharu Otsuka's Group, Univ. of Tokyo

Spokespersons: S. Leoni, B. Fornal, N. Marginean

Candidato: Chiara Sosio Matricola: 901265

PACS: 21.10.-k

Anno Accademico 2018-2019

Gamma coincidence technique

Gamma coincidence technique

Comparison between experiment and theory

Comparison between two neutrons transfer and one proton transfer

IFIN-HH laboratory (Romania) - ROSPHERE array: 25 HPGe

ONE PROTON TRANSFER REACTION

 11 B + 63 Cu $\rightarrow ^{12}$ C + 62 Ni

Thickness of the target: 5 mg/cm²

 $E_{beam} = 24 \text{ MeV} (\text{sub-Coulomb barrier reaction})$

Study of neutron-rich isotopes with neutron-induced-fission reactions

7) v-ball/LICORNE Physics Case: Gamma spectroscopy in the north-east region of doubly magic ⁷⁸Ni – search for neutron radioactivity

L. W. Iskra, B. Fornal (IFJ Krakow) and S. Leoni (University of Milano)

L.K. Peker et al., Phys. Lett. B₃6 (1971) 547.

Study of the ⁸²Ge isotope

Study of the ⁸²Ge isotope

Y. H. Zhang et al., Phys. Rev. C 70, 024301 (2004)

 0^{+}

Study of the ⁸²Ge isotope

Institut Laue-Langevin - ILL

EXILL campaign EXogam@ILL (2012)

FIPPS Fission Product Prompt y-ray Spectrometer

10 clover detectors6 large coaxial detectors

Neutrons induced fission of on ²³⁵U and ²⁴¹Pu

Ł. W. Iskra *et al.*, p.64 Annual Report ILL (2017)
Ł. W. Iskra *et al.*, EPL 117, 12001 (2017)
Ł. W. Iskra *et al.*, Acta Phys. Pol. B 48, 581 (2017)
Ł. W. Iskra *et al.*, Phys. Scripta, 92, 10 (2017)
Ł. W. Iskra et al., EPN, 48 3, 14 (2017)

- C. Michelagnoli *et al.*, EPJ **193**, 04009 (2018).
- Neutron induced fission of on ²³³U and ²³⁵U
- > ~50 days of measurements with each target

Searching for the onset of shape coexistence before *N* = 60

M. Matejska-Minda, B. Fornal et al., PRC 80, 017302(2009)

Z = 40

N = 60

Searching for the onset of shape coexistence before *N* = 60

W. Urban (Ł.W. Iskra) et al., PRC 96, 044333 (2017)

Ł. W. Iskra, S. Leoni, B. Fornal et al., PRC 102, 054324 (2020)

Shape evolution in the Y isotopic chain

Hartree-Fock-Bogoliubov calculations

No sudden onset of deformation at N = 60 but graduall decrease in energy !? First observation of a deformed structure in an *N* = 57 isotone

Active fission target

Active fission target

²³⁵U(n,f) ²³³U(n,f) ^{239,241}Pu, ^{243,245,247}Cm, ²⁴²Am, ... solid target 0 detectors

- Diamond detectors (CVD)
- Silicon carbide detectors (SiC)

LOHENGRIN fission fragment separator

Mass-separated fragments, $\sim 10^5$ /s, $t_{1/2} \sim \mu s$

Test of diamond detectors with LOHENGRIN

$2 \times 2 \text{ mm}^2$

IFJ PAN

$10 \times 10 \text{ mm}^2$

LPSC Grenoble

Preamplifiers, electronic suport and data acquisition system: INFN Milano - C. Boiano and S. Brambilla

Test of diamond detectors with FIPPS

Figures from the thesis

UNIVERSITÀ DEGLI STUDI DI MILANO

FACOLTÀ DI SCIENZE E TECNOLOGIE Corso di Laurea in Fisica

Elaborato di Laurea Magistrale

High-resolution gamma-ray spectroscopy of fission fragments: improvement of the performance of the FIPPS instrument at ILL

Candidato: Giacomo Colombi Matricola 932239 Relatori: Prof.ssa Silvia Leoni Dott.ssa Caterina Michelagnoli Correlatore:

Dott. Łukasz W. Iskra

Anno Accademico 2019–2020

Lifetimes measurement with LOHENGRIN

J.-M. Régis et al., NIM A 955, 163258 (2020)

Lifetimes measurements with LOHENGRIN

⁹⁶Y – 22 days of measurement

> 95Y – 10 days of measurement

94Y - 6 days of measurement

 \rightarrow 93Y – 3 days of measurement

ILL RESEARCH PROPOSAL			26/08/2020
$Tit]e: \ Study of the deformation of the 96Rb isotope via fast timing measurements$			3-01-688
Proposer (to whom correspondence will be addressed)			
Name and first name	Address	Phone	Email
Lukasz ISKRA	INFN, MILANO VIA CELORIA, 16 20133 MILANO ITALY	696900713 New neutron user:	lukasz.iskra@ifj.edu.pl : No New ILL user: No
		Local contact contacted: Yes	

Lifetimes measurement with LOHENGRIN

Ł. W. Iskra, S. Leoni, B. Fornal et al., PRC 102, 054324 (2020)

A = 96

Lifetimes measurement with LOHENGRIN

J. Dudouet et al., PRL 118, 162501 (2017).

Summary

Scientific line :

- Gamma spectroscopy of neutron-rich isotopes produced in neutron-induced fission process
 - Studies of nuclei in N-E of double magic ⁷⁸Ni; searching for neutron radioactivity - fast-nautron-induced fission of ²³²Th target (*IJCLab* Orsay with v-ball array)
 - Searching for shape coexistence in nuclei around Z = 40, N = 60; studies of onset and evolution of the deformed structures in Y isotopes
 thermal-neutron-induced fission of ²³³U and ²³⁵U targets (ILL Grenoble with FIPPS array)
 - Studies of the deformed structures in Y and Rb isotopes via lifetimes measurement
 thermal-neutron-induced fission ²³⁵U target (ILL Grenoble with LOHENGRIN mass spectrometer)
- > Development of new instruments for fission experiments
 - Active target based on liquid scintillator efficient fission tag
 - Active targets based on diamond or SiC detectors
 - Development of Gas Filled Magent for FIPPS array (near future)

Collaboration group

S. Leoni, S. Bottoni *et. al.*C. Sossio, A. Filippini, G. Colombi Università degli Studi and INFN sez. Milano

B. Fornal, N. Cieplicka-Oryńczak *et al. The Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland*

J. N. Wilson, M. Lebois, D. Thisse, N. Jovancevic IJCLab, Orsay, France

C. Michelagnoli, U. Köster, F. Kandzia, Y. H. Kim, M. Jentschel *et al. ILL, Grenoble, France*

Thank you for your attention