Higgs boson properties with $H \rightarrow \tau \tau$ decays using the CMS detector

Particle and Astroparticle Physics Division seminar, IFJ PAN 17 November 2020

Michał Bluj National Centre for Nuclear Research, Świerk/Warszawa

Higgs physics after discovery

- Directions of Higgs boson studies after its discovery
 - **Precision measurements:**

cross-section & couplings, mass & width

• Direct observation of couplings to fermions

(3rd generation):

 $H \rightarrow \tau \tau, \; H \rightarrow bb, \; ttH \; processes$

• Rare processes:

coupling to 2^{nd} generation: $H \rightarrow \mu\mu$, $H \rightarrow cc$, self coupling (HH), H->Zy/yy* (BSM in loops), "Invisible" decays

• BSM searches:

additional Higgs bosons, exotic decays, anomalous couplings

Higgs physics after discovery

- Directions of Higgs boson studies after its discovery
 - Precision measurements: cross-section & couplings, mass & width
 - Direct observation of couplings to fermions (3rd generation):

 $H \to \tau \tau, \; H \to bb, \; ttH \; processes$

• Rare processes:

coupling to 2^{nd} generation: H $\rightarrow \mu\mu$, H $\rightarrow cc$, self coupling (HH), H->Zy/yy* (BSM in loops), "Invisible" decays

• BSM searches:

additional Higgs bosons, exotic decays, anomalous couplings

\odot H $\rightarrow \tau\tau$ important in this programme:

- Reasonable purity & Br~6%: cross-section at high-p_T(H) and of VBF (HVV coupling)
- Probe Yukawa coupling
- $H \rightarrow \tau \tau$ can be enhanced in BSM

(also additional Higgs bosons)

- $H \rightarrow \tau \tau$ important in this programme:
 - Reasonable purity & Br~6%: cross-section at high-p_T(H) and of VBF (HVV coupling)
 - Probe Yukawa coupling
 - $H \rightarrow \tau \tau$ can be enhanced in BSM (also additional Higgs bosons)

Outline

 \odot Anatomy of $H \rightarrow \tau\tau$ measurements

- \odot Higgs boson cross-section with $H \rightarrow \tau \tau$
- Probing CP structure of tau Yukawa coupling

Higgs boson production at LHC

- Observe to a serve the serve to a serve
- VBF and VH production modes
 - Cross-section O(10) times smaller than for gg → H
 σ~3.8pb (VBF), ~1.4pb (WH), ~0.9pb (ZH) at 13TeV
 - Characteristic signatures: jets, leptons, p_{T}^{miss}

(from V or scattering quarks)

o ttH & tH production

 σ ~0.5pb (ttH), ~0.08pb (tH) at 13TeV

Anatomy of $H \rightarrow \tau \tau$ measurements

τ reconstruction in CMS

- Only visible τ decay products reconstructed
 - $_{\circ}~$ vs contribute to $p_{_{T}}^{_{miss}}$
- ${}^{\odot}$ Leptonic decays undistinguishable from prompt $\,e\,$ and μ
- O Decays to hadrons+ν (τ_h) with hadron- plus-stips (HPS) algorithm
 - Main decay modes
- Further identification with DNN
 - $_{\circ}$ $\tau_{_{h}}$ quantities & quantities of particles around $\tau_{_{h}}$ (global and perparticle)

=> significant gain in performance wrt previous tauID

hadron hadron+strip 3 hadrons 3 hadrons + strip $\tau^{+} \rightarrow \pi^{+}\nu$ $\tau^{+} \rightarrow \rho^{+}\nu \rightarrow \pi^{+}\pi^{0}\nu$ $\tau^{+} \rightarrow a_{1}^{+}\nu \rightarrow \pi^{+}\pi^{-}\pi^{+}\nu$ $\tau^{+} \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{0}\nu$

Anatomy of $H \rightarrow \tau\tau$ measurements

- $_{\odot}$ Use the $\tau_{h}\tau_{h}$, $\mu\tau_{h}$, $e\tau_{h}$, and $e\mu$
- Exploit event topology
 - Production: 0-, 1- and 2-jet (VBF)
 - \circ p_T of the di-t+MET (Higgs)
 - \circ VH($\tau\tau$) channels analysed separately

Anatomy of $H \rightarrow \tau \tau$ measurements

- $_{\odot}$ Use the $\tau_{h}\tau_{h}$, $\mu\tau_{h}$, $e\tau_{h}$, and $e\mu$
- Exploit event topology
 - Production: 0-, 1- and 2-jet (VBF)
 - $_{\circ}$ p_τ of the di-τ+MET (Higgs)
 - \circ VH($\tau\tau$) channels analysed separately
- $_{\odot}~$ Fully reconstructed m__ (res. of ~20%)
 - max likelihood based

CMS-HIG-PAS-19-010

Anatomy of $H \rightarrow \tau\tau$ measurements

- $_{\odot}$ Use the $\tau_{h}\tau_{h}$, $\mu\tau_{h}$, $e\tau_{h}$, and $e\mu$
- Exploit event topology
 - Production: 0-, 1- and 2-jet (VBF)
 - $_{\circ}$ p_τ of the di-τ+MET (Higgs)
 - \circ VH($\tau\tau$) channels analysed separately
- $_{\odot}\,$ Fully reconstructed m_ (res. of ~20%)
 - max likelihood based

=> Cut-based or MVA-based event categories with different yields & S/B

- Fit S&B expectations to data to find event yields
 - All categories fit simultaneously
 - Systematics as nuisance parameters

Background in $H \rightarrow \tau \tau$ measurements

$Z/\gamma^{\star} \to \tau\tau$

Embedding technique: Replace μs in $Z/\gamma^* \rightarrow \mu \mu$ data by simulated τs

Mis-ID τs (fakes)

Mainly: QCD jets, W+jets w/ jet $\rightarrow \tau$ Fake factors technique: Apply mis-ID probability to τ -free events

Z/ γ^* → ee/µµ, tt+jets, Others (VV, single-t, ...) Simulation (with MC/data corrections)

Higgs boson cross-section with $H \rightarrow \tau \tau$

CMS-HIG-PAS-19-010

IFJ PAN, 17. 11. 2020

Simplified template cross-section

- Simplified template cross-section (STXS):
 - $_{\circ}$ generic fiducial volume (y_H<2.5)
 - specific production modes
 - mutually exclusive regions of phase-space
 - => Sensitive fain-grained measurements
 - => Reduced theory uncertainties

Simplified template cross-section

- Simplified template cross-section (STXS):
 - $_{\circ}$ generic fiducial volume (y_H<2.5)
 - specific production modes
 - mutually exclusive regions of phase-space
 - => Sensitive fain-grained measurements
 - => Reduced theory uncertainties
- Inclusive: total x-sec
- Stage 0: production processes ($gg \rightarrow H, VBF$)

Simplified template cross-section

Measurement strategy

 h_{h} , VBF high p_{-}^{H} **CMS** Preliminary 137 fb⁻¹ (13 TeV) 10⁴ Events/bin $Z \rightarrow ee/\mu\mu$ [$t\bar{t} + jets$] + Obs. $\tau \tau$ bkg. jet $\rightarrow \tau_h$ mis-ID Others Η→ττ (μ = 0.85) Unc. 700 < m, < 1200 GeV m, > 1200 GeV 10^{3} Full Run-2 data of 137/fb 10² Five event categories 0 (motivated by STXS bins) 10 2D fit in each (m & other): 1 Obs. - bkg. Bkg. unc. 20 (Obs. - bkg.) / Bkg. unc $H \rightarrow \tau \tau$ / Bkg. unc. Bkg. unc VBF, low & high $p_{-}(H)$; m_i 0-jet; $p_{\tau}(\tau_{h})$ m_{ττ} (GeV) Boosted: 1-jet, ≥2-jets; 137 fb⁻¹ (13 TeV) $\tau_{\rm h}\tau_{\rm h}$, boosted monojet **CMS** Preliminary $p_{\tau}(H)$ Events/bin 10⁵ + Obs. <mark></mark>ττ bkg. jet→τ_h mis-ID Z→ ee/μμ tī+jets Η→ττ (μ = 0.85) 📕 Others Unc. 120 < p^H < 200 GeV 200 < p_+ < 250 GeV p^H > 250 GeV 60 < p^H < 120 GeV 104 Highest sensitivity at high $p_{\tau}(H)$ and for VBF 0 10³ 10² topology 10

(Obs. - bkg.) / Bkg. unc.

- H→ττ / Bkg. unc.

Bkg. unc

Obs. - bkg. Bkg. unc.

(GeV

Results: inclusive & stage 0

- Inclusive and gg → H not dominated by stat. unc.
 Experimental unc. of
 - ~10% for inclusive

 - ~30% for VBF (qqH)
- In agreement with SM predictions

Results: stage 1.2

 $u = \sigma_{-} / \sigma$

Obs

SM

Parameter value

IFJ PAN, 17.11.2020

CMS

NCBJ

CP structure of Y_{τ} coupling

CMS-HIG-PAS-20-006

IFJ PAN, 17. 11. 2020

Tau Yukawa coupling (Y_{T})

 Yukawa coupling: CP-odd term can occur at tree level (no suppression by NP scale!)

Parametrisation: effective CP mixing angle:

$$\tan(\phi_{\tau\tau}) = \frac{\tilde{\kappa}_{\tau}}{\kappa_{\tau}}$$

Tau Yukawa coupling (Y_{T})

 Yukawa coupling: CP-odd term can occur at tree level (no suppression by NP scale!)

0.04

0.02

 $\tau\tau \rightarrow \pi\pi$

100

50

150

200

Parametrisation: effective CP mixing angle:

$$\tan(\phi_{\tau\tau}) = \frac{\tilde{\kappa}_{\tau}}{\kappa_{\tau}}$$

$$d\Gamma(\mathrm{H} \to \tau^+ \tau^-) \approx 1 - b(E^+)b(E^-)\frac{\pi^2}{16}\cos(\phi_{\mathrm{CP}} - 2\phi_{\tau\tau})$$

CMS

NCBJ

p[™]_>33 GeV

 $\begin{array}{c} 250 \quad 300 \quad 350 \\ \varphi_{CP} (degrees) \end{array}$

Strategy

- Full Run-2 data of 137/fb
- Most sensitive channels: $μτ_h & τ_h τ_h (~50\% of all ττ final states)$

Mode	μ^{\pm}	π^{\pm}	$ ho^{\pm} ightarrow \pi^{\pm} \pi^{0}$	$a_1{}^\pm \to \pi^\pm \pi^0 \pi^0$	$a_1{}^\pm \to \pi^\pm \pi^\mp \pi^\ddagger$
$\mathcal{B}(\%)$	17.4	11.5	25.9	9.5	9.8
Symbol	μ	π	ρ	a_1^{1pr}	a_1^{3pr}

- Three event categories with ML (muli-class NN/BDT):
 - \circ H $\rightarrow \tau \tau$ signal
 - Genuine $\tau\tau$ (mainly Z/ $\gamma^* \rightarrow \tau\tau$)
 - Fakes (mainly QCD multi-jets & W+jets)
 - => Use m_{π} and event topology & kinematics
- Reconstruct decay planes (signal cat.)
- Fit expectation to data in all categories
 - $_{\odot}~$ 2D fit in signal category: $\phi_{_{CP}}$ vs ML score

Decay plane reconstruction

In LHC generally not possible

- Momentum carried by us, not known Higgs rest frame
- => use approximated methods
- ◎ Impact parameter method for single charged particle (μ^{\pm} , π^{\pm})

(by S.Berge et al)

Plane spanned by IP and momentum of charged particle

 \odot Neutral pion method (ρ , a_1^{1pr} , a_1^{3pr})

(by Z.Wąs et al)

Plane spanned by momentum of charged and neutral particle

- $_{\circ}~a_{_{1}}^{_{1}\text{pr}}$: momenta of $2\pi^{0}$ summed up
- $_{0}$ $a_{_{1}}^{^{3pr}}$: find pair compatible with ρ and use instead of π^{0}
- Combine planes in zero momentum frame (ZMF) of two charged particles

IFJ PAN, 17. 11. 2020

Example signal categories: pp, µp

Optimise sensitivity

- Dedicated BDT for τ_h decaymode identification (on top of HPS) => reduces smearing due to incorrect decay-mode assignment (improvement of 15-20% over HPS)
- Impact parameters estimated with 3D helical track extrapolation towards PV => more precise IP and its uncertainty

Most sensitive channels: $\rho\rho$, $\pi\rho$, $\mu\rho$

each with ~1σ separation
 between CP-even and -odd

Results: $\phi_{\tau\tau}$

- 1^{st} measurement of CP structure of Y_{τ}
- \odot Consistent with SM: CP- even preferred over CP-odd with 3.2 σ
- $\phi_{\tau\tau} = (4 \pm 17 \text{ (stat)} \pm 2 \text{ (bin-by-bin)} \pm 1 \text{ (syst)} \pm 1 \text{ (theory)})^{\circ}$
- Uncertainty dominated by statistic

25

Results: reduced couplings

Excursion: Y₁ measurement

- Same coupling structure
- Parametrised by

 $f_{\rm CP}^{\rm Htt} = \frac{|\tilde{\kappa}_{\rm t}|^2}{|\kappa_{\rm t}|^2 + |\tilde{\kappa}_{\rm t}|^2} \operatorname{sign}(\tilde{\kappa}_{\rm t}/\kappa_{\rm t})$

- Measured with $ttH \rightarrow \gamma\gamma$
- BDT (estimate of optimal D₀-variable) used; it exploits:
 - jet kinematics & b-tagging,
 - γγ kinematics (w/ mass),
 - lepton kinematics & multiplicity
- $_{\odot}$ m_{yy} fit in D₀ bins
- Results:
 - Obs: $f_{CP}^{Htt} = 0.00 \pm 0.33$ at 68% CL
 - Exp: $f_{CP}^{Htt} = 0.00 \pm 0.49$
 - CP-even preferred over CP-odd with 3.2σ (exp. 2.6σ)

IFJ PAN, 17. 11. 2020

 Similar sensitivity by ATLAS

Summary

- Run-2 opens era of precise measurements of the Higgs boson
- \odot Measurements with H \rightarrow TT decays provides unique opportunities:
 - $_{\odot}\,$ Production cross-section measurements at high p_(H) and
 - high m_{ii} (VBF topology)
 - Measured in STXS framework;
 - Measurement of differential cross-sections ongoing
 - Probing of CP structure of tau Yukawa coupling
 - CMS measurement (1st of this type!) agrees with SM and excludes pure CP-odd coupling at 3.2σ
 - Inclusion of $e+\tau_{_h}$ and other analysis improvements will increase sensitivity of the measurement by ${\sim}10\%$

=> The boson looks like **the** (minimal) **SM Higgs boson** (at least with current precision)

Additional material

Results: $gg \rightarrow H vs VBF$

Close to 1 sigma agreement with SM

 $_{\odot}$ Presented as signal strengths (μ=σ_{obs}/σ_{sm}) and coupling modifiers (κ)

Results: stage 1.2

Result using topology-based merging
 Highest sensitivity at high p₁(H) and for VBF

topologies (inaccessible with other decays)

 $\mu = \sigma / \sigma$

Parameter value

IFJ PAN, 17. 11. 2020

MVA T decay-mode ID

Decay mode migrations lead to incorrect ϕ_{CP} estimates => Dedicated BDT developed to improve decay mode identification on top of HPS

Inputs include:

- Inv. masses of tau decay products,
- angular distribution of photons in strips,
- HPS decay mode

Substantial gain in purity and Efficiency => Improves φ_{CP} sensitivity by ~15-20% CMS-DP-2020-041 IFJ PAN, 17. 11. 2020

Check with $Z \rightarrow \tau \tau$

 $\phi_{\rm CP}$ flat for $Z \rightarrow \tau \tau$,

but can be modulated when events "nearly perpendicular" ($\alpha > \pi/4$, here) or "nearly coplanar" ($\alpha < \pi/4$) to qT production plane are selected

- cf. S.Berge et al, arXiv:1410.6362
- Can be used to check data/MC of ϕ_{CP} with Z $\rightarrow \tau\tau$ enriched

sample

 Observed agreement is very good

CP structure of HVV coupling with $H \rightarrow \tau \tau$

Phys. Rev. D 100 (2019), 112002 (HIG-17-034)

HVV coupling

 $A(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu},$

 \underline{m}_{V} , \underline{q}_{V} , $\underline{\varepsilon}_{V}$ - mass, 4-momentum and polarization of V boson,

 $f^{\mu\nu} = \varepsilon_{V}^{\mu} g^{\nu} - \varepsilon_{V}^{\mu\nu} g^{\mu}$ - field strength tensor

- [☉] In SM only $a_1^{ZZ} \neq 0$ and $a_1^{WW} \neq 0$ at tree level, assumed $a_1 \equiv a_1^{ZZ} = a_1^{WW}$
- $a_3 CP odd => CPV$ via interference with <u>CP-even</u>
- Assuming constant and real couplings (sensible for m_{BSM} >>m_H) it is eqiv. to eff. Lagrangian:

$$\begin{split} L(\text{HVV}) &\sim a_1 \frac{m_Z^2}{2} \text{HZ}^{\mu} Z_{\mu} - \frac{\kappa_1}{(\Lambda_1)^2} m_Z^2 \text{HZ}_{\mu} \Box Z^{\mu} - \frac{1}{2} a_2 \text{HZ}^{\mu\nu} Z_{\mu\nu} - \frac{1}{2} a_3 \text{HZ}^{\mu\nu} \tilde{Z}_{\mu\nu} \\ &+ a_1^{\text{WW}} m_W^2 \text{HW}^{+\mu} W_{\mu}^{-} - \frac{1}{(\Lambda_1^{\text{WW}})^2} m_W^2 \text{H} \left(\kappa_1^{\text{WW}} W_{\mu}^{-} \Box W^{+\mu} + \kappa_2^{\text{WW}} W_{\mu}^{+} \Box W^{-\mu} \right) \\ &- a_2^{\text{WW}} \text{HW}^{+\mu\nu} W_{\mu\nu}^{-} - a_3^{\text{WW}} \text{HW}^{+\mu\nu} \tilde{W}_{\mu\nu}^{-} \\ &+ \frac{\kappa_2^{Z\gamma}}{\left(\Lambda_1^{Z\gamma}\right)^2} m_Z^2 \text{HZ}_{\mu} \partial_{\nu} F^{\mu\nu} - a_2^{Z\gamma} \text{HF}^{\mu\nu} Z_{\mu\nu} - a_3^{Z\gamma} \text{HF}^{\mu\nu} \tilde{Z}_{\mu\nu} - \frac{1}{2} a_2^{\gamma\gamma} \text{HF}^{\mu\nu} F_{\mu\nu} - \frac{1}{2} a_3^{\gamma\gamma} \text{HF}^{\mu\nu} \tilde{F}_{\mu\nu}, \\ &\quad \text{cf. CMS Collaboration, Phys. Rev. D 92, 072010 (2015)} \end{split}$$

HVV coupling

$$A(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu}$$

 $\underline{m}_{v'}$, $\underline{q}_{v'}$, $\underline{\varepsilon}_{v}$ – mass, 4-momentum and polarization of V boson,

- $f^{\mu\nu} = \varepsilon_{\nu}^{\mu} g^{\nu} \varepsilon_{\nu}^{\mu\nu} g^{\mu}$ field strength tensor
- $_{\odot}$ In SM only a₁^{ZZ}≠0 and a₁^{WW}≠0 at tree level,
- assumed $a_1 ≡ a_1^{ZZ} = a_1^{WW}$ (custodial <u>sym.</u>)
 same also for $a_j ≡ a_j^{ZZ} = a_j^{WW}$ (kin. not affected, results can be reinterpreted)
- \circ a₃ <u>CP-odd</u> => CPV via interference with <u>CP-even</u>
- Parametrise using fractional cross-section (uncerts, cancel out):

$$fai = \frac{|a_i^2|\sigma_i}{\sum_j |a_j^2|\sigma_j} \quad \varphi_{ai} = \arg(\frac{a_i}{a_1})$$

where σ_i cross section (decay rate) for $a_i = 1, a_{j \neq i} = 0$

Probing HVV coupling w/ MELA

- MELA (Matrix Element Likelihood Analysis)
 - Two types of discriminants

$$\mathcal{D}_{\mathrm{alt}}\left(\boldsymbol{\Omega}\right) = \frac{\mathcal{P}_{\mathrm{sig}}\left(\boldsymbol{\Omega}\right)}{\mathcal{P}_{\mathrm{sig}}\left(\boldsymbol{\Omega}\right) + \mathcal{P}_{\mathrm{alt}}\left(\boldsymbol{\Omega}\right)}$$

$$\mathcal{D}_{\text{int}}\left(\boldsymbol{\Omega}\right) = \frac{\mathcal{P}_{\text{int}}\left(\boldsymbol{\Omega}\right)}{2\sqrt{\mathcal{P}_{\text{sig}}\left(\boldsymbol{\Omega}\right) \ \mathcal{P}_{\text{alt}}\left(\boldsymbol{\Omega}\right)}}$$

- D_{alt} distinguishes between signal (sig) and alternative (alt) model
 - <u>alt</u> can be alternative production (to categorise events) or background or coupling model
- $\circ D_{int}$ accounts for interference
- Signal distributions with JHUgen

Analysis strategy

- Used 36/fb (2016 data)
- $H \rightarrow \tau \tau$: $\tau_h \tau_h$, $\mu \tau_h$, $e \tau_h$, $e \mu$
 - Categories (production) using kinematic cuts
 - VBF category (2-jet, high mjj, ...)
 - boosted category (1-jet or 2-jets no-VBF)
 - 0-jets category
- Production info & H kinematics
 - $m^{}_{\pi}$ (+ other quantity deepened on channel) in 0-jets category
 - $m_{\pi}^{}$, p_{τ}^{H} in boosted category
 - m_{π} , m_{jj} , D_{0-} (a_3 contr.), D_{CP} ($a_1 a_3$ interf.) in VBF category
 - and signal strength modifiers $\mu_{_{F}}\!,\,\mu_{_{V}}$

Results (combined with $H \rightarrow 4I$)

Parameter	Observed / (10^{-3})		Expected $/(10^{-3})$		
	68% CL	95% CL	68% CL	95% CL	
$f_{a3}\cos(\phi_{a3})$	0.00 ± 0.27	[-92,14]	0.00 ± 0.23	[-1.2, 1.2]	
$f_{a2}\cos(\phi_{a2})$	$0.08^{+1.04}_{-0.21}$	[-1.1, 3.4]	$0.0^{+1.3}_{-1.1}$	[-4.0, 4.2]	
$f_{\Lambda 1} \cos(\phi_{\Lambda 1})$	$0.00^{+0.53}_{-0.09}$	[-0.4, 1.8]	$0.00^{+0.48}_{-0.12}$	[-0.5, 1.7]	
$f_{\Lambda 1}^{Z\gamma}\cos(\phi_{\Lambda 1}^{Z\gamma})$	$0.0^{+1.1}_{-1.3}$	[-6.5, 5.7]	$0.0^{+2.6}_{-3.6}$	[-11, 8.0]	

f_{ai} agree with 0 (SM) with $10^{-3} - 10^{-2}$ precision at 95% CL

95%CL

Parameter	Observed	Expected	
a_3/a_1	[-0.81, 0.31]	[-0.090, 0.090]	
a_2/a_1	[-0.055, 0.097]	[-0.11, 0.11]	
$(\Lambda_1 \sqrt{ a_1 }) \cos(\phi_{\Lambda 1})$ (GeV)	$[-\infty,-650]\cup[440,\infty]$	$[-\infty, -610] \cup [450, \infty]$	
$(\Lambda_1^{Z\gamma}\sqrt{ a_1 })\cos(\phi_{\Lambda 1}^{Z\gamma})$ (GeV)	$[-\infty,-400]\cup[420,\infty]$	$[-\infty, -360] \cup [390, \infty]$	

 \underline{a}_{1}/a_{1} agree with 0 (SM) with 10⁻¹ precision