

HF jets analysis

16.09.2020 ALICE@IFJ meeting

Sebastian Bysiak

Sebastian Bysiak (IFJ PAN)

Outline

- 1. Stability improvement:
 - reweighting with GB reweighter
 - training in bins of pT (*multimodel*)

Reweighting with GB reweighter

10⁰ 10⁻¹ 10⁻² 10⁻³ 10⁻⁴

Ó

50

100

150

- IDEA: instead of reweighting in bins (curse of dimensionality!) use BDT to determine proper splitting of the feature space
- proposed to validate with 2-sample Kolmogorow-Smirnov test
- https://arxiv.org/abs/1608.05806, https://github.com/arogozhnikov/hep ml

- in my case: 84 dims, several hundreds of samples used for reweighting
- KS greatly improved, when compared to "no reweighting" i.e. data with MC in hard-pt-bins
- just weighting MC using pT already improves the KS scores significantly (= "standard")
- one trial may not be enough as this is another BDT which can be tuned

Reweighting with GB reweighter

Sebastian Bysiak (IFJ PAN)

HFJ analysis

<u>4</u>

training in bins of pT (multimodel)

- training is 6 bins: pT = 5, 10, 20, 30, 50, 100, 200 GeV/c;
 > 500k samples for each but last bin
- managed to run it over night not well validated in terms of overfitting etc
- I got strange, skewed score distributions:

each dot = score values in data and MC corresponding to this quantile

Score distr.

ALICE

Score distr. (reweighted)

different score distr. shapes in general slightly smaller mismatch data-MC?

Sebastian Bysiak (IFJ PAN)

HFJ analysis

0.15 < P < 0.95, standard

Sebastian Bysiak (IFJ PAN)

0.15 < P < 0.95, reweighted

Sebastian Bysiak (IFJ PAN)

0.15 < P < 0.95, multimodel

Sebastian Bysiak (IFJ PAN)

0.15 < P < 0.95, standard VS reweighted

rather similar performance reweighted: better at mid-pT

0.15 < P < 0.95, standard VS multimodel

multimodel: performance much more flat in pT, but usually simply worse than standard

- no significant improvement with reweighting or multimodel
- both can be optimized as one-shot tried so far
- QQ method show last week yields best results so far, but the other options would be prefered in case of comparable performance

JacekO: other idea for reweighting? (yesterday slack)

0.15 < P < 0.95, QQ

Sebastian Bysiak (IFJ PAN)

0.15 < P < 0.95, standard VS QQ

Old way of tagging

same cut value for data and MC

"QQ method"

different cut value for data and MC

OR

same cut value if our observable is score quantile instead of score

0.75 < P < 0.95

right: stddev ~ 1 σ_{sys} left: slope ~ maximal deviation, in range 0 < P < 1

top row: compared to mean bottom row: compared to $\sigma_{\rm stat}$

maybe model does not assign proper score, but it at least sorts the jets correctly

Sebastian Bysiak (IFJ PAN)