Andrzej Siódmok & Petr Baroň

Outline

- I. Part I (A. Siódmok)
 - a) Introduction and Motivation
 - b) How well the Monte Carlo Generators can describe the q/g jets [JHEP 1707 (2017) 091], [Eur.Phys.J. C77 (2017) no.12, 876]
 - c) How changing of energy of collision can help us to get more precise measurements? [Eur.Phys.J. C51 (2007) 607-617]
- II. Part II (P. Baroň)
 - a)Novel approach to measure quark/gluon jets at the LHC
 - b)Preliminary results
 - c)Summary and outlook

Motivation

European Strategy for Particle Physics

"Europe's top priority should be the exploitation of the full potential of the LHC"

dr hab. Andrzej Siódmok

Why we would like to distinguish Q/G jets?

BSM searches: often signature for a BSM signals: many quark, backgrounds: QCD gluons

• 8-jet Gluino event: $pp \rightarrow \tilde{g}\tilde{g}$ and each \tilde{g} decays to 4 quarks:

- Higgs $H^+ \to c\bar{s}$ (for charged Higgs mass between τ and t mass)
- Measure Z' coupling to hadrons (or find a leptophobic Z'/W')

Why we would like to distinguish Q/G jets?

Interesting standard model physics also tends to be quark-heavy Examples:

- W's decaying hadronically (no b's!): $W^+ \to u\bar{d}$ or $c\bar{s}$
- Tops $(t\bar{t} \rightarrow b\bar{b} + 0, 2, \text{ or 4 light quarks})$
- Vector Boson Scattering/Fusion (forward 'tag' jets are quarks)

QCD background:mainly composed by gluonsSignal:mainly composed by quarks

Introduction -q/g jets perturbative component

Gluon has a greater effective color charge (squared) than quark:

Expectation:

- Gluon will radiate more
- Gluon will radiate wider
- Multiple radiation → effect will exponentiate

Introduction – q/g jets perturbative component

[hep-ex/9708029]

Introduction – q/g jets perturbative component

Average Jet Mass in the small angle limit:

$$\left\langle M^2 \right\rangle = C \frac{\alpha_s}{\pi} \, p_T^2 \, R^2$$

Introduction – jet structure

History: Discovery of the gluon

This collision event recorded in **1979**, provided the first evidence of the gluon.

Recorded as event 13177 of run 447 of the TASSO experiment at the Deutsches Elektronen-Synchrotron (DESY), the graphic shows three jets of particles produced in an electron-positron collision.

Distinguish Q/G jets as is as old as gluon's discovery

Quark - Gluon Separation in Three Jet Events Hans Peter Nilles (SLAC), K.H. Streng (SLAC) (Aug 1, 1980) Published in: Phys.Rev.D 23 (1981) 1944	#1
pdf ∂ links ∂ DOI ⊡ cite	
A Monte Carlo Program for Quark and Gluon Jet Generation Torbjorn Sjostrand (Lund U., Dept. Theor. Phys.) (Apr 1, 1980)	#2
pdf	∋ 1 citation

Quark and gluon jet separation: Conventional and neural network methods

Z. Fodor (Eotvos U.) (Jul, 1991)

Published in: Conf.Proc.C 910725V1 (1991) 438 • Contribution to: Joint International Lepton Photon Symposium at High Energies (15th) and European Physical Society Conference on High-energy Physics, 438

Quark versus Gluon Jet Tagging Using Charged Particle Multiplicity with the ATLAS Detector

ATLAS Collaboration (Apr 11, 2017)

#2

Distinguish Q/G jets as is as old as gluon's discovery

Quark - Gluon Separation in Three Jet Events Hans Peter Nilles (SLAC), K.H. Streng (SLAC) (Aug 1, 1980) Published in: <i>Phys.Rev.D</i> 23 (1981) 1944	#1
È pdf ∂ links ∂ DOI ⊡ cite	
A Monte Carlo Program for Quark and Gluon Jet Generation Torbjorn Sjostrand (Lund U., Dept. Theor. Phys.) (Apr 1, 1980)	#2
B pdf	
Quark and gluon jet separation: Conventional and neural network methods	#2
Z. Fodor (Eotvos U.) (Jul, 1991)	
Published in: Conf.Proc.C 910725V1 (1991) 438 • Contribution to: Joint International Lepton Photon Symposium at High Energies European Physical Society Conference on High-energy Physics, 438	(15th) and
A Direct observation of quark - gluon jet differences at LEP	#4
OPAL Collaboration • G. Alexander (Tel Aviv U.) et al. (Jun, 1991)	
Published in: Phys.Lett.B 265 (1991) 462-474	
Quark / gluon jet discrimination at HERA	#5
Jon Pumplin (Michigan State U. and DESY) (Jul 21, 1992)	
Published in: Nucl.Phys.B 390 (1993) 379-398	

Why we would like to distinguish Q/G jets?

Jet structure and quark/gluon separation in CDF	#3
CDF Collaboration • M. Ninomiya (Tsukuba U.) for the collaboration. (1993)	
Published in: In *Tsukuba 1993, Proton antiproton collider physics* 248-256 • Contribution to: 9th Topical Workshop on Proton - Antiproton Collider Physics, 248-256	
A Measurement of quark and gluon jet differences at the Z0 resonance	#3
SLD Collaboration • Yoshihito Iwasaki (Tohoku U.) for the collaboration. (Aug, 1994)	
Published in: DPF Conf.1994:1606-1608 • Contribution to: 1994 Meeting of the American Physical Society, Division of Particles and Fields (DPF 94), 1606-1608	
Quark Gluon Jet Discrimination with Weakly Supervised Learning	#2
Jason Sang Hun Lee (Seoul U.), <u>Sang Man Lee</u> (Seoul U.), <u>Yunjae Lee</u> (Seoul U.), Inkyu Park (Seoul U.), Ian James Watson (Seoul U.) et al. (Nov 2019)	12,
Published in: J.Korean Phys.Soc. 75 (2019) 9, 652-659	
Data-driven quark and gluon jet modification in heavy-ion collisions	#2
Jasmine Brewer (MIT, Cambridge, CTP), Jesse Thaler (MIT, Cambridge, CTP), Andrew P. Turner (MIT, Cambridge, CTP) (Aug 19, 2020) e-Print: 2008.08596 [hep-ph]	
Measurement of quark- and gluon-like jet fractions using jet charge in PbPb and pp collisions at 5.02 TeV	#6
CMS Collaboration • Albert M Sirunyan (Yerevan Phys. Inst.) et al. (Apr 1, 2020)	
Published in: JHEP 07 (2020) 115 • e-Print: 2004.00602 [hep-ex]	
Quark versus Gluon Jet Tagging Using Charged Particle Multiplicity with the ATLAS Detector	#7
ATLAS Collaboration (Apr 11, 2017)	

LHC Q/G jet measurement

Pythia

Herwig++

Quark Efficiency

anti-k, R=0.4, |η| < 0.8

60 GeV<p,<80 GeV L dt = 4.7 fb⁻¹, (s = 7 TeV

Efficiency is simply the ratio of the number of jets selected by a discriminant over the total number in the sample. Herwig++ is too pessimistic, Quark and gluon jets looks more the same than in the data.

Pythia is too optimistic, Quark and Gluon jets are too different compared to data.

[ATLAS, Eur. Phys. J. C (2014) 74]

Gluon Efficiency

1.2

0.8

0.6

0.4

0.2

2.0

1.0 0.5 0.0 2

0.3

0.4

0.5

0.6

MC/Data 1.0 0.5

Conclusion:

"A detailed study of the jet properties reveals that quark-and gluon-jets look more similar to each other in the data than in the Pythia 6 simulation and less similar than in the Herwig++ simulation."

Problem: Q/G jets LHC data show discrepancy with the predictions from MC generators

Motivation - Monte Carlo Event Generators (MCEG) Standard Model

There is a **huge gap** between a one-line formula of a fundamental theory, like

the Lagrangian of the SM, and the experimental reality that it implies

Theory Standard Model Lagrangian

Experiment LHC event

- MC event generators are designed to bridge the that gap
- "Virtual collider" ⇒ Direct comparison with data

Almost all **HEP measurements and discoveries** in the modern era have **relied on MCEG**, most notably the discovery of the Higgs boson.

Published papers by ATLAS, CMS, LHCb: **2252** Citing at least 1 of 3 existing MCEG: **1888** (**84%**)

[Gras, Hoeche, Kar, Larkoski, Lönnblad, Plätzer, AS, Skands, Soyez, Thaler, JHEP 1707 (2017) 091]

[Larkoski,Salam,Thaler,13] [Larkoski,Thaler,Waalewijn,14]

Framework

Processes:

- Quark: $e^+e^- \rightarrow (\gamma/Z)^* \rightarrow u\bar{u}$
- Gluons: $e^+e^- \rightarrow H^* \rightarrow gg$

Different Monte-Carlo generators at parton and hadron level:

- Pythia 8 (v8.205)
- Herwig++ (v2.7.1)
- Sherpa (v2.1.1)

Additionally different Parton Shower algorithms

- Vincia (v1.201 plugin to Pythia)
- Deductor (v1.0.2 + hadronization from Pythia)
- Ariadne (v5.0. β + hadronization from Pythia)

[Gras, Hoeche, Kar, Larkoski, Lönnblad, Plätzer, AS, Skands, Soyez, Thaler, JHEP 1707 (2017) 091]

 $\Delta = \frac{1}{2} \int d\lambda \, \frac{\left(p_q(\lambda) - p_g(\lambda)\right)^2}{p_q(\lambda) + p_g(\lambda)}$

 $\Delta = 0$ - corresponds to no discrimination power.

 $\Delta = 1$ - corresponds to perfect discrimination power.

Affects both IRC unsafe and IRC safe observables

IFJ PAN, Seminar of NO1, 27.10.2020

How we improved simulation of Q/G jets in Herwig

Improving the Simulation of Quark and Gluon Jets with Herwig 7

Daniel Reichelt (Dresden, Tech. U.), Peter Richardson (CERN and Durham U., IPPP), Andrzej Siodmok (Cracow, INP) (Aug 4, 2017) Published in: *Eur.Phys.J.C* 77 (2017) 12, 876 • e-Print: 1708.01491 [hep-ph]

Multiplicity distribution of charged particles in gluons jets for two different gluon energies.

Data was one of the **key for the improvement** and it is still needed for the progress. However it is hard to measure "clear" q/g samples at the LHC.

IFJ PAN, Seminar of NO1, 27.10.2020

LHC Q/G jet measurement

What is a Quark Jet?

From lunch/dinner discussions

LHC how to define G enhanced sample

#7

Quark versus Gluon Jet Tagging Using Charged Particle Multiplicity with the ATLAS Detector

ATLAS Collaboration (Apr 11, 2017)

Can we find a way to get enhanced Q/G with the same Pt, **n**?

IFJ PAN, Seminar of NO1, 27.10.2020

LHC Q/G jet measurement

LHC Q/G jet measurement

This technique exploits significant, pT dependent differences in the q and g-jet content between dijet and y+jet samples

 Goal: to measure the quark/gluon shapes from data, dijet (DJ) and photon+jet (γ J) events.

Ideally, solve for q/g (for each bin i) from:

 $\begin{array}{ll} h_i(DJ) &= P_Q(DJ)q_i + P_G(DJ)g_i \\ h_i(\gamma J) &= P_Q(\gamma J)q_i + P_G(\gamma J)g_i \end{array}$

- P_Q = quark percentage, from MC
- *h* = histogram value, from data

q/g = pure q/g jet distributions (solving for these)

Can changing the energy of collision help us?

Z boson as "the standard candle" for high-precision W-boson physics at LHC [Krasny, Fayette, Płaczek, AS, Eur.Phys.J. C51 (2007) 607-617]

IFJ PAN, Seminar of NO1, 27.10.2020

Can changing the energy of collision help us?

Z boson as "the standard candle" for high-precision W-boson physics at LHC

IFJ PAN, Seminar of NO1, 27.10.2020

Part II Petr Baroň - a) Novel approach

[Gras, Hoeche, Kar, Larkoski, Lönnblad, Plätzer, AS, Skands, Soyez, Thaler, JHEP 1707 (2017) 091]

[Larkoski,Salam,Thaler,13] [Larkoski,Thaler,Waalewijn,14]

Each angularitity λ is composed of gluon λ_g and quark λ_q angularities

Each angularitity λ is composed of gluon λ_g and quark λ_q angularities

$$\lambda = f \lambda_{g} + (7 - f) \lambda_{q}$$

<u> Part II - a) Novel approach</u>

Each angularitity λ is composed of gluon λ_g and quark λ_q angularities

$$\lambda = f \lambda_{g} + (7 - f) \lambda_{q}$$

f ... gluon fraction (*1-f*) ... quark fraction

Can we reverse the equation

$$\lambda = f \lambda_g + (7-f) \lambda_q$$

and obtain
$$\lambda_g = ?$$

<u>Part II - a) Novel approach</u>

Can we reverse the equation

$$\lambda = f \lambda_g + (7-f) \lambda_q$$

and obtain
$$\lambda_g = ?$$

No, it is still function of unknown λ_q : $\lambda_g = \lambda_g (\lambda_q)$

Can we reverse the equation

$$\lambda = f \lambda_g + (7-f) \lambda_q$$

and obtain
$$\lambda_g = ?$$

No, it is still function of unknown λ_q : $\lambda_g = \lambda_g (\lambda_q)$

But, here comes the idea of measurement at different energies.

Lets write equations for measurement at energy 900 GeV and 13 000 GeV

Lets write equations for measurement at energy 900 GeV and 13 000 GeV

$$\lambda^{900} = f^{900} \lambda_g + (7 - f^{900}) \lambda_q$$
$$\lambda^{13000} = f^{13000} \lambda_g + (7 - f^{13000}) \lambda_q$$

Lets write equations for measurement at energy 900 GeV and 13 000 GeV

$$\lambda^{900} = f^{900} \lambda_g + (7 - f^{900}) \lambda_q$$
$$\lambda^{13000} = f^{13000} \lambda_g + (7 - f^{13000}) \lambda_q$$

 $One \ can \ reverse:$ $\lambda_g = \frac{(1 - f^{13000})\lambda^{900} - (1 - f^{900})\lambda^{13000}}{f^{900} - f^{13000}}$ $\lambda_q = \frac{f^{900}\lambda^{13000} - f^{13000}\lambda^{900}}{f^{900} - f^{13000}}$

<u> Part II - a) Novel approach</u>

$$\lambda_g = \frac{(1 - f^{13000})\lambda^{900} - (1 - f^{900})\lambda^{13000}}{f^{900} - f^{13000}}$$

$$\lambda_q = \frac{f^{900}\lambda^{13000} - f^{13000}\lambda^{900}}{f^{900} - f^{13000}}$$

 λ^{900} , λ^{13000} ... measurement (same cuts, average $p_T^{>} 50$ GeV)

f⁹⁰⁰, f¹³⁰⁰⁰ ... simulation

Gluon Fraction PDF and Herwig MHT2014nlo68cl as a function of p_T Herwig 13000 GeV, $f^{13000}(50) = 0.8$ ----- PDF gluon 13 000 GeV PDF gluon 900 GeV Herwig 900 GeV, $f^{900}(50) = 0.52$ 1.0-1.00.90.9 0.8 Herwig g / (g + quarks + antiquakrs) r = 0.0 r quarks + antiquakrs) 0.70.6 0.560 0.4 00 PDF 0.3 0.3 0.20.2 -0.10.10.0+0.00 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 $p_T \, [\text{GeV}]$

Gluon Fraction PDF and Herwig MHT2014nlo68cl as a function of p_T Herwig 13000 GeV, $f^{13000}(50) = 0.8$ ----- PDF gluon 13 000 GeV PDF gluon 900 GeV Herwig 900 GeV, $f^{900}(50) = 0.52$ 1.0-1.00.90.9 0.8 Herwig g / (g + quarks + antiquakrs) r = 0.0 r quarks + antiquakrs) 0.70.6 0.560 0.4 00 2360 hadr PDF Jet p_{T} 10 0.30.3 10-3 0.20.2 10-4 -0.10.10 50 100 150 200 0.0+0.00 20 30 40 50 60 70 90 100 110 120 130 140 150 160 170 180 190 200 10 80 $p_T \, [\text{GeV}]$

IFJ PAN, Seminar of NO1, 27.10.2020

[Gras, Hoeche, Kar, Larkoski, Lönnblad, Plätzer, AS, Skands, Soyez, Thaler, JHEP 1707 (2017) 091]

[Larkoski,Salam,Thaler,13] [Larkoski,Thaler,Waalewijn,14]

IFJ PAN, Seminar of NO1, 27.10.2020

IFJ PAN, Seminar of NO1, 27.10.2020

IFJ PAN, Seminar of NO1, 27.10.2020

LHA, $pp \rightarrow 2j$, $\mathbf{R} = 0.4$

IFJ PAN, Seminar of NO1, 27.10.2020

Lets write equations for measurement at energy 900 GeV and 13 000 GeV

$$\lambda^{900} = f^{900} \lambda_g + (7 - f^{900}) \lambda_q$$
$$\lambda^{13000} = f^{13000} \lambda_g + (7 - f^{13000}) \lambda_q$$

 $One \ can \ reverse:$ $\lambda_g = \frac{(1 - f^{13000})\lambda^{900} - (1 - f^{900})\lambda^{13000}}{f^{900} - f^{13000}}$ $\lambda_q = \frac{f^{900}\lambda^{13000} - f^{13000}\lambda^{900}}{f^{900} - f^{13000}}$

Lets write equations for measurement at energy 900 GeV and 13 000 GeV

$$\begin{split} \lambda^{900} &= f^{900} \lambda_g + (1 - f^{900}) \lambda_q \\ \lambda^{2360} &= f^{2360} \lambda_g + (1 - f^{2360}) \lambda_q \\ \lambda^{13000} &= f^{13000} \lambda_g + (1 - f^{13000}) \lambda_q \\ &= \frac{(1 - f^{13000}) \lambda^{900} - (1 - f^{13000}) \lambda_g}{f^{900} - f^{13000}} & \lambda_g = \frac{f^{900} \lambda^{2360} - f^{2360} \lambda^{900}}{f^{900} - f^{2360}} \\ &= \frac{f^{900} \lambda^{13000} - f^{13000} \lambda^{900}}{f^{900} - f^{13000}} & \lambda_g = \frac{(1 - f^{2360}) \lambda^{900} - (1 - f^{900}) \lambda^{2360}}{f^{900} - f^{2360}} \end{split}$$

IFJ PAN, Seminar of NO1, 27.10.2020

Gluon Fraction PDF and Herwig MHT2014nlo68cl as a function of p_T Herwig 13000 GeV, $f^{13000}(50) = 0.8$ PDF gluon 13 000 GeV PDF gluon 2360 GeV Herwig 2360 GeV, $f^{2360}(50) = 0.66$ 1.0 -1.0PDF gluon 900 GeV Herwig 900 GeV, $f^{900}(50) = 0.52$ 0.9-0.9-0.80.8 Herwig g / (g + quarks + antiquakrs) $6 \quad 0.0 \quad 0.$ PDF g / (g + quarks + antiquakrs)0.3-0.30.2-0.20.1-0.10.0+0.020 30 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 0 10 40 $p_T \, [\text{GeV}]$

IFJ PAN, Seminar of NO1, 27.10.2020

Multiplicity, $pp \rightarrow 2j$, $\mathbf{R} = 0.4$

IFJ PAN, Seminar of NO1, 27.10.2020

LHA, $pp \rightarrow 2j$, $\mathbf{R} = 0.4$

LHA, $pp \rightarrow 2j$, $\mathbf{R} = 0.4$

Introduction – jet structure

IFJ PAN, Seminar of NO1, 27.10.2020

IFJ PAN, Seminar of NO1, 27.10.2020

LHA, $pp \rightarrow 2j$, $\mathbf{R} = 1.0$

IFJ PAN, Seminar of NO1, 27.10.2020

Introduction – jet structure

Part II - c) Summary and Outlooks <u>Summary</u>

- 1. Preliminary results look very promising.
- 2. As expected we see that with increasing jet radius we get contamination, most likely due to UE event background.

<u>Outlooks</u>

- 1. Optimize, cuts (Pt, rapidity, R)
- 2. Investigate results with grooming techniques
- 3. Estimate uncertainties:
 - 3 MC generators (Pythia, Herwig, Sherpa)
 - 3 PDF (MRST, CTEQ, NNPDF)
 - more energies
- 4. Publish the results.
- 5. Measure it at the LHC.
- 6. Use the measurement to improve MC generators.

How we improved simulation of Q/G jets in Herwig

Improving the Simulation of Quark and Gluon Jets with Herwig 7

Daniel Reichelt (Dresden, Tech. U.), Peter Richardson (CERN and Durham U., IPPP), Andrzej Siodmok (Cracow, INP) (Aug 4, 2017) Published in: *Eur.Phys.J.C* 77 (2017) 12, 876 • e-Print: 1708.01491 [hep-ph]

"A case study of quark-gluon discrimination at NNLL0 in comparison to parton showers"

Thrust - similar to general angularity (1,2) but not restricted to particles in a jet.

$$T = \max_{i} \frac{\sum_{i} |\hat{t} \cdot \vec{p_i}|}{\sum_{i} |\vec{p_i}|}, \quad \tau = 1 - T$$

"This highlights the substantial improvement in the description of gluon jets in the latest version of Herwig"

IFJ PAN, Seminar of NO1, 27.10.2020

How we improved simulation of Q/G jets in Herwig

Improving the Simulation of Quark and Gluon Jets with Herwig 7

Daniel Reichelt (Dresden, Tech. U.), Peter Richardson (CERN and Durham U., IPPP), Andrzej Siodmok (Cracow, INP) (Aug 4, 2017) Published in: *Eur.Phys.J.C* 77 (2017) 12, 876 • e-Print: 1708.01491 [hep-ph]

