Decay of "stretched" M4 resonance in ¹³C - first experimental studies at CCB IFJ PAN

Participants and collaboration

<u>N. Cieplicka-Oryńczak</u>, B. Fornal, M. Ciemała, M. Kmiecik, A. Maj, J. Łukasik,
P. Pawłowski, B. Sowicki, B. Wasilewska, M. Ziębliński, I. Ciepał, M. Krzysiek,
M. Matejska-Minda, K. Mazurek, W. Parol, B. Włoch, Y. Jaganathen
Institute of Nuclear Physics PAN, Kraków, Poland

S. Leoni, C. Boiano, S. Brambilla, S. Ziliani, S. Bottoni, A. Bracco, F. Camera, Ł. W. Iskra University of Milan and INFN Sezione di Milano, Milan, Italy

> M. N. Harakeh KVI, Groningen, Netherlands

N. Marginean, C. Clisu, N. Florea, R. Marginean, L. Stan, I. Burducea, D. A. Iancu *IFIN-HH, Magurele, Romania*

M. Sferazza Universite libre de Bruxelles, Brussels, Belgium

> M. Płoszajczak GANIL, Caen, France

P. Kulessa Institut für Kernphysik, Jülich, Germany

Seminar of Division of Nuclear Physics and Strong Interactions IFJ PAN, 19 October 2020, Kraków, Poland

Outline

What is a "stretched" state?

The first case studied at CCB: ¹³C

experiment "Study of M4 stretched configuration decay in ¹³C" proposed by S. Leoni (INFN and Univ. Milano), B. Fornal (IFJ PAN), M. Ciemała (IFJ PAN)

Experiment and results of analysis:

Scattered protons - light charged particles coincidences experiment performed in June 2020

Theoretical calculations within Gamow Shell Model - preliminary results Y. Jaganathen (IFJ PAN), M Płoszajczak (GANIL)

Stretched states in light nuclei - continuum region

CONFIGURATIONAL PURITY

Stretched states are ones of the simplest known nuclear excitations which should provide the most <u>clean information on the details of nuclear force</u>.

TESTING GROUND FOR THEORETICAL CALCULATIONS

Direct measurement of the properties of stretched states, such as, for example, decay patterns, should provide data, which may be used as a very <u>demanding test of state-of-the-art theory approaches</u>, from Shell Model Embedded in the Continuum to ab-initio type calculations.

Previous studies of M4 resonances in ¹³C

 π^+

(a)

 π

1 linum

3.68

7 49

200

200

200 **(c)**

-200

From ${}^{13}C(\pi,\pi')$ scattering:

- 9.5 MeV is 9/2⁺: pure n excitation
- **16.08 MeV** is 7/2⁺: mainly p excitation
- **21.47 MeV** is $(7/2^+, 9/2^+)$ p and n excitations ٠

The aim of the present investigations is to identify the decay of the 21.5-MeV $1p_{3/2} \rightarrow 1d_{5/2}$ resonance in ¹³C

13**C**

Previous studies of M4 resonances in ¹³C Inelastic proton scattering on ¹³C = 20.93 Me $E_{p} = 135 \text{ MeV}$ 21.47 3σ/d.n. The M4 resonance at 21.47 MeV in ¹³C GATE ON SCATTERED PROTONS is peaked at 30° EXCITATION ENERGY (MeV) 103 Ex = 23.00 Me Indiana University Cyclotron Facility Magnetic Spectrograph, S.F. Collins et al., Nuc. Phys. A481, 494(1988) 0 20 40 60 80

 $\Theta_{cm}(deg)$

Experimental setup - measurements with thick and thin targets

1) Scattered protons measurement: KRATTA telescope array 2) γ -ray detection:

- four LaBr₃ detectors (3"x3")
- two clusters of the PARIS scintillator array

3) Measurement of light charged particles produced in the reaction: a thick position-sensitive Si detector

Experimental setup - measurements with thick and thin targets

THICK ¹³C TARGET **197 mg/cm²**: May-June 2019

126 hours of measurement + 17 hours for calibration + 24 hours for tests

6 KRATTA modules at ~36 $^\circ$

THIN ¹³C TARGET 1 mg/cm²: December 2019, March and June 2020

98 hours of measurement + 2 hours for calibration + 9 shifts for tests

30 KRATTA modules at ~36° (angular coverage: 30° -43°)

Scattered protons measurement: KRATTA telescope array
γ-ray detection:

- four LaBr₃ detectors (3"x3")
- two clusters of the PARIS scintillator array

3) Measurement of light charged particles produced in the reaction: a thick position-sensitive Si detector

Measurement of the scattered protons: KRATTA telescope array

KRATTA - excitation energy spectra

KRATTA - excitation energy spectra

Excitation energy spectra measured at $\sim 36^{\circ}$ corresponding to the excitations in the ¹³C target nucleus measured as:

Decay of the 21.47-MeV stretched state in ¹³C: first experimental information

PERFORMANCE OF DSSSD (FROM THICK ¹³C TARGET EXPERIMENT)

PERFORMANCE OF DSSSD (FROM THICK ¹³C TARGET EXPERIMENT)

Double Sided Silicon Strip Detector (Micron Semiconductor Ltd)

Active area: No. of strips: Thickness: 50mm x 50mm 32 (16 per side) 1.5 mm

Why another experiment?

Expected energies of emitted protons are below 4 MeV so protons will stuck in the thick target

THIN TARGET NEEDED FOR LOW-ENERGY PROTONS!

Excit.Energy in ¹² B [MeV]	E _{proton} [MeV]
2.723	1.214
2.621	1.316
1.674	2.263
0.953	2.984
0.0	3.937

Thin 1 mg/cm² ¹³C target experiment

Double Sided Silicon Strip Detector (Micron Semiconductor Ltd)

Active area: No. of strips: Thickness: 50mm x 50mm 32 (16 per side) 1.5 mm

Information on the energy and rise time allowing for light particle identification

¹³C target made of 10 foils in separate frames, total thickness 1 mg/cm² (Nicoleta Florea, Nicu Marginean IFIN-HH, Bucharest, Romania)

Why another experiment?

Expected energies of emitted protons are below 4 MeV so protons will stuck in the thick target

THIN TARGET NEEDED FOR LOW-ENERGY PROTONS!

Excit.Energy in ¹² B [MeV]	E _{proton} [MeV]
2.723	1.214
2.621	1.316
1.674	2.263
0.953	2.984
0.0	3.937

Scattered proton - light charged particle coincidences

Sorting conditions:

٠

.

- gate on protons in KRATTA ٠
- gate on times in KRATTA • plastic mult = 1

+ KINEMATIC CORRECTION (by M. Ciemała)

- Kinetic energy of proton in DSSD was reconstructed, that is, corrected on the energy of ^{13}C recoil (all angles of Plastics and DSSD pixels included)
- Energy loss of the particle in the middle of the target was included
- plastic ID corresponding to KRATTA ID
- Energy of ¹²B recoil was added

Excit.Energy in ¹² B [MeV]	E _{proton} [MeV]
2.723	1.214
2.621	1.316
1.674	2.263
0.953	2.984
0.0	3.937

Stretched states in the continuum - Gamow Shell Model calculations

The Gamow Shell Model is an open-quantum system extension of the traditional Shell Model, which provides a rigorous treatment of the many-body correlations and the coupling to the resonant and non-resonant particle continuum.

Calculations by Y. Jaganathen (IFJ PAN) and M. Płoszajczak (GANIL)

- ✤ A core of ⁴He was used.
- The configuration space used in the calculations is the *psd* space.
- The p_{3/2} shell is chosen to be semi-frozen with a maximum of 3 neutron+proton holes allowed to model the existence of a noninert ¹²C core.
- Such truncation should allow to describe simple states in ¹²C, ¹²B, ¹³C, ¹³N, in particular the *M*4 state which is assumed to be an almost pure particle-hole excitation from the p_{3/2} shell to the d_{5/2} shell.

FOR THE FIRST TIME GSM CALCULATIONS WERE PERFORMED FOR SUCH "HEAVY" SYSTEM

		T .				
Nucleus	State	Isospin	E_{calc} [MeV]	E_{exp} [MeV]	F _{calc} [keV]	Γ_{exp} [keV]
¹² C	0+	T = 0	-0.173	0		
¹² C	2+	T = 0	4.239	4.440		
¹² C	1+	T = 1	15.010	15.110		ent
¹² B	1+	T = 1	0.115	0		oreemerie
¹² B	2+	T = 1	1.151	0.953	rood	as energie
¹² B	2-	T = 1	1.573	1.673	Very sims	01 0
¹² B	1-	T = 1	2.776	2.621	in terr	
¹² B	0+	T = 1	2.977	2.723		

CANDIDATES FOR THE 21.5-MeV M4 RESONANCE IN ¹³C:

J=7/2+	T=1/2	E = 19.5 MeV	Γ = 550 keV
J=9/2+	T=1/2	E = 21.7 MeV	Γ = 450 keV
J=9/2+	T=3/2	E = 23.5 MeV	Γ = 700 keV

THE NEXT STEP: TO COMPUTE THE BRANCHING RATIOS AND TO COMPARE THEM WITH THE EXPERIMENTAL RESULTS

Summary

The first information on the decay branching of the 21.47-MeV stretched state in ¹³C nucleus was obtained from proton-gamma coincidence measurements with thick ¹³C target.

The most of the intensity of the proton-decay channel (89(4)%) was found to be associated with the population of the 0.953-MeV first excited state in ¹²B, while the remaining (11(4)%) is distributed between the 2.621- and/or 1.674-MeV higher-lying states. For the neutron decay channel leading to ¹²C, only the population of the 15.11-MeV state was observed.

A test experiment with a thin ¹³C target, aiming at **measuring the protons** emitted from the decay of the 21.47-MeV M4 resonance in ¹³C was performed.

Indication is obtained for a 3-MeV proton branch which is consistent with the population of the first excited state in ¹²B, in agreement with what observed in the gamma-ray analysis. Using this method, an estimation of the decay branch leading to the ground state in ¹²B, which cannot be observed in proton-gamma coincidences, should also be possible. The present data already point to an upper limit of the order of 1/3 of the first excited state population.

For the first time Gamow Shell Model calculations were performed for such "heavy" system.

Comparisons with experiment in terms of **states energies and decay branchings** are being performed for the first time and they seem to be successfull.

This newly developed approach will be crucial in predicting structures in the continuum in other nuclei in this key region of nuclear chart.

Thank you for your attention!

Estimation of the expected number of counts from excitation energy - gamma energy matrix

