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Inspired by human brain

●Human brain:
– 1014 neurons, frequency 100 Hz
– Parallel processing of data (complex pattern recognition in 

100 ms –  10 steps only!!!)
– Learns on examples
– Resistant for errors and damaged neurons

●Neural Network:

– Just an algorithm, which might not reflect the way the brain 
is working.
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Neural networks

● At the input of each node a weighted sum of inputs is 
given. It is transformed by the activation function 
(typically sigmoid) and later send to the output. 

● How to train the multilayer network? How to tune the 
weights in the hidden layers? This problem was 
unsolved for a long time...

●
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Funkcja aktywacji

Solution – backpropagation. 
An error  y-f(x,w) is 
propagated backward through 
the net using the actual 
weights  („revolution” of 
'80’ies).

Inputs

Output

Hidden layers

Activation function
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Deep Learning
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● What does “deep learning” mean?
● Why does it give better results than other methods in pattern recognition, 

speech recognition and others?

 

Deep Learning



25.11.2020 6M. Wolter

Short answer:
‘Deep Learning’ - using a neural network with many hidden layers
A series of hidden layers makes the feature identification first and processes 
them in the chain of operations:  feature identification→ further feature 
identification → ……. →selection

But NN are well known starting from 80-ties???

We always had good algorithms to train NN with one or two hidden layers.

But they were failing for more layers

NEW:  algorithms for training deep networks

            huge computing power
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W1 

W2 

W3 

f(x)

1.4

-2.5

-0.06

Activation function

How do we train a NN
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2.7

-8.6

0.002

f(x)

1.4

-2.5

-0.06

x =  -0.06×2.7 + 2.5×8.6 + 1.4×0.002  = 21.34 
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NN training
Inputs               Class
1.4  2.7   1.9         0
3.8  3.4   3.2         0
6.4  2.8   1.7         1
4.1  0.1   0.2         0
etc …
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Training data
Inputs               Class
1.4  2.7   1.9         0
3.8  3.4   3.2         0
6.4  2.8   1.7         1
4.1  0.1   0.2         0
etc …

Initialization with random weights
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Training data
Inputs               Class
1.4  2.7   1.9         0
3.8  3.4   3.2         0
6.4  2.8   1.7         1
4.1  0.1   0.2         0
etc …

Reading data
Processing them by network
Result compared with the true value

1.4 

2.7                                                    

1.9        0.8
0
Errror 0.8

The weights are modified. Modification
Based on this error.

We repeat many times, each time modifying the weights
Training algorithms take care, that the error is smaller and smaller
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Remark

● If the activation function is non-linear, than a neural 
network with one hidden layer can classify any 
problem (fits any function). 

● There exists a set of weights, which allows to do that. 
However, the problem is to find this set of weights...
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How to identify the 
features?
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What is this neuron 
doing?
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Neurons in the hidden layers are the self-
organizing feature detectors

…

1

63

 1                5                10                 15                20                25  …

Huge weight

Small weight
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What can it detect?

…

1

63

 1                5                10                 15                20                25  …

Huge weight

Small weight

It sends a strong signal, when it finds 
a horizontal line in the top row of pixels, 
ignores anything else. 
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What can it detect?

1

63

 1                5                10                 15                20                25  …

Small weight

Sends strong signal, if a dark region in the left
upper corner is found.

…

Huge weight

…
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What feature should detect a neural network 
recognizing the handwriting?
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63

1

Vertical lines
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63

1

Horizontal lines
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63

1

Circles

And what about the sensitivity on
position of these features???
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Next layers can learn the higher level features

 
  

 
  

 
  etc …Detecting lines

in given places
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Higher level detectors

etc …
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Deep network

Each hidden layer is an automatic feature 
detector

an auto-encoder
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An autoencoder neural network is an unsupervised 
learning algorithm that applies backpropagation, setting 
the target values to be equal to the inputs.

The aim of an autoencoder is to learn a representation (encoding) 
for a set of data, typically for the purpose of dimensionality 
reduction. 
If there is a structure in the data, than it should find features.
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Hidden layers are trained 
to identify features
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The last layer performs the actual 
classification
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Such an organised network makes 
sense...

Our brains probably work in a similar 
way
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Unfortunately, until recent (10?) years we 
didn’t
know how to train a deep network
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Machine Learning and Deep Learning

● Traditional ML (BDT, NN etc) – the scientist finds good, well discriminating 
variables (~10), called “features”, and performs classification using them as 
inputs for the ML algorithm.

● Deep Learning – thousands or millions of input variables (like pixels of 
a photo), the features are automagically extracted during training.
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Deeper network?

Traditional Neural Networks have one or two hidden 
layers.

Deep Neural Network: a stack of sequentially trained 
auto encoders, which recognize different features 
(more complicated in each layer) and automatically 
prepare a new representation of data. This is how our 
brains are organized.

But how to train such a stack?

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-4/

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-4/
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Training a Deep Neural Network

● In the early 2000s, attempts to train deep neural networks were frustrated by 
the apparent failure of the well known back-propagation algorithms 
(backpropagation, gradient descent). Many researchers claimed NN are 
gone, only Support Vector Machines and Boosted Decision Trees should be 
used!

● In 2006, Hinton, Osindero and Teh1 first time succeeded in training a deep 
neural network by first initializing its parameters sequentially, layer by layer. 
Each layer was trained to produce a representation of its inputs that served 
as the training data for the next layer. Then the network was tweaked using 
gradient descent (standard algorithm).

● There was a common belief that Deep NN training requires careful 
initialization of parameters and sophisticated machine learning 
algorithms.

1Hinton, G. E., Osindero, S. and Teh, Y., A fast learning algorithm for deep belief nets, Neural Computation 
18, 1527-1554.
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Training with a brute force
● In 2010, a surprising counter example to the conventional wisdom was 

demonstrated1.
● Deep neural network was trained to classify the handwritten digits in the 

MNIST2 data set, which comprises 60,000 28 × 28 = 784 pixel images for 
training and 10,000 images for testing.

● They showed that a plain DNN with architecture (784, 2500, 2000, 1500, 
1000, 500, 10 – HUGE!!!), trained using standard stochastic gradient descent 
(Minuit on steroids!), outperformed all other methods that had been applied to 
the MNIST data set as of 2010. The error rate of this 12 million parameter ∼
DNN was 35 images out of 10,000. 

The training images were randomly and slightly deformed before every 
training epoch. The entire set of 60,000 undeformed images could be 
used as the validation set during training, since none were used as 
training data.

1 Cireşan DC, Meier U, Gambardella LM, Schmidhuber J. ,Deep, big, simple neural nets for handwritten 
digit recognition. Neural Comput. 2010 Dec; 22 (12): 3207-20.
2 http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
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Why it didn’t work before?
● More data, clusters of GPU/CPU (computing power!)

● The particular non-linear activation function chosen for neurons in a neural 
net makes a big impact on performance, and the one often used by default is 
not a good choice.

● The old vanishing gradient problem happens, basically, because 
backpropagation involves a sequence of multiplications that invariably result 
in smaller derivatives for earlier layers. That is, unless weights are chosen 
with difference scales according to the layer they are in - making this simple 
change results in significant improvements.
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Applet showing the performance of deep NN:

http://cs.stanford.edu/people/karpathy/convnetjs/

A Deep Neural Network Applet

http://cs.stanford.edu/people/karpathy/convnetjs/
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A tutorial – how to design a Keras DNN
● Task – build a simple network to recognize hand-written digits:

60000 train samples
10000 test samples
Model: "sequential_3"
_______________________________________________________
__________
Layer (type)                 Output Shape              Param #  
 
================================
================================
=
dense_9 (Dense)              (None, 512)               401920 
   
_______________________________________________________
__________
dropout_7 (Dropout)          (None, 512)               0         
_______________________________________________________
__________
dense_10 (Dense)             (None, 512)               
262656    
_______________________________________________________
__________
dropout_8 (Dropout)          (None, 512)               0         
_______________________________________________________
__________
dense_11 (Dense)             (None, 512)               
262656    
_______________________________________________________
__________
dropout_9 (Dropout)          (None, 512)               0         
_______________________________________________________
__________
dense_12 (Dense)             (None, 10)                5130     
 
================================
================================
=
Total params: 932,362
Trainable params: 932,362
Non-trainable params: 0

28 x 28   
pixels
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Init
The first step is to define the functions and classes we intend to use 
in this tutorial. We will use the NumPy library to load our dataset and 
we will use two classes from the Keras library to define our model.

The imports required are listed below.

import matplotlib.pyplot as plt  # matplotlib plotting
import numpy as np

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import RMSprop, Adam

Here is the code:
https://github.com/marcinwolter/MachineLearning2020/blob/main/mnist_mlp_minimal.ipyn
b
 

https://www.numpy.org/
https://keras.io/
https://github.com/marcinwolter/MachineLearning2020/blob/main/mnist_mlp_minimal.ipynb
https://github.com/marcinwolter/MachineLearning2020/blob/main/mnist_mlp_minimal.ipynb
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Load Data
We can now load our dataset:

# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

MNIST database of handwritten digits

Dataset of 60,000 28x28 grayscale images of the 10 digits, along with 
a test set of 10,000 images.
Usage:

from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

    Returns:
        2 tuples:
            x_train, x_test: uint8 array of grayscale image data with shape 
(num_samples, 28, 28).
            y_train, y_test: uint8 array of digit labels (integers in range 0-9) with 
shape (num_samples,).
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MNIST dataset
6 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0

784 numbers

# reshape dataset 
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)

# convert to float32
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')

#normalize to one
x_train /= 255
x_test /= 255

We make now a numpy array of shape (6000, 784) out of a python 
tuple
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Prepare data 
convert to categorical

print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

num_classes = 10
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

We want to use NN with 10 outputs (each corresponding to one digit) 
to get a probability for each digit. So we convert the y_train from a 
single number to vector:
•7 → (0,  0, 0, 0, 0, 0, 0, 1, 0)
•0 → (1,  0, 0, 0, 0, 0, 0, 0, 0)
•9 → (0,  0, 0, 0, 0, 0, 0, 0, 1)
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Define Keras Model

Models in Keras are defined as a sequence of layers.

We create a Sequential model and add layers one at a time until we 
are happy with our network architecture.

The first thing to get right is to ensure the input layer has the right 
number of input features. This can be specified when creating the 
first layer with 512 nodes and with the input_dim argument and 
setting it to 784 for the 784 input variables.

model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(
784,)))

The activation function is relu 
(Rectified Linear):
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Define Keras Model
Adding next layers. How do we know the number of layers and their 
types?

This is a very hard question. There are heuristics that we can use and often the 
best network structure is found through a process of trial and error 
experimentation. Generally, you need a network large enough to capture the 
structure of the problem.

In this example, we will use a fully-connected network structure with three 
hidden layers.

Fully connected layers are defined using the Dense class. We can specify the 
number of neurons or nodes in the layer as the first argument, and specify the 
activation function using the activation argument.

We will use the rectified linear unit activation function referred to as ReLU on the 
first three layers:

model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,)))
model.add(Dense(512, activation='relu'))
model.add(Dense(512, activation='relu'))
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Define Keras Model

model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,)))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(num_classes, activation='softmax'))

model.summary()

Adding output layer with num_classes=10 nodes and softmax (see next slide) 
activation function. We use a sigmoid on the output layer to ensure our network output 
is between 0 and 1 and easy to map to either a probability of class 1 or snap to a hard 
classification of either class with a default threshold of 0.5.

Between the layers we add a Dropout layer to avoid overtraining:
Dropout consists in randomly setting a fraction rate of input units to 0 at each update 
during training time, which helps prevent overfitting.  
http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

model.summary() - print the network structure

http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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Softmax activation function

Softmax function, a wonderful activation function that turns numbers aka 
logits into probabilities that sum to one. Softmax function outputs a vector 
that represents the probability distributions of a list of potential outcomes. It’s 
also a core element used in deep learning classification tasks. 
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Train the network
model.compile(loss='categorical_crossentropy',
              optimizer=RMSprop(),
              metrics=['accuracy'])

When compiling, we must specify some additional properties required when training the 
network. Training a network means finding the best set of weights to map inputs to outputs 
in our dataset.
We must specify the loss function to use to evaluate a set of weights, the optimizer is used 
to search through different weights for the network and any optional metrics we would like to 
collect and report during training.

This loss is for a categorical classification problems and is defined in Keras as 
“categorical_crossentropy“. You can learn more about choosing loss functions based on 
your problem here:
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learn
ing-neural-networks/

We will define the optimizer as the efficient stochastic gradient descent algorithm 
“RMSprop“. We could also use “adam”, which is a popular version of gradient descent 
because it automatically tunes itself and gives good results in a wide range of problems. 

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
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Fit Keras Model
batch_size = 128
epochs = 10 

history = model.fit(x_train, y_train,
                    batch_size=batch_size,
                    epochs=epochs,
                    verbose=1,
                    validation_data=(x_test, y_test))

We can train or fit our model on our loaded data by calling the fit() function on the model.
Training occurs over epochs and each epoch is split into batches.

    Epoch: One pass through all of the rows in the training dataset.
    Batch: One or more samples considered by the model within an epoch before weights are 
updated.
One epoch is comprised of one or more batches, based on the chosen batch size and the 
model is fit for many epochs. 
For this problem, we will run for a small number of epochs (10) and use a  batch size of 128.

These configurations can be chosen experimentally by trial and error. We want to train the 
model enough so that it learns a good (or good enough) mapping of rows of input data to the 
output classification. The model will always have some error, but the amount of error will level 
out after some point for a given model configuration. This is called model convergence.
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Evaluate Keras Model

score = model.evaluate(x_test, y_test, verbose=0)
print('Test accuracy:', score[1])

We have trained our neural network on the entire dataset and we can evaluate 
the performance of the network on another “test” dataset.
You can evaluate your model on a dataset using the evaluate() function. 
This will generate a prediction for each input and output pair and collect scores, 
including the average loss and any metrics you have configured, such as 
accuracy.
The evaluate() function will return a list with two values. The first will be the loss 
of the model on the dataset and the second will be the accuracy of the model 
on the dataset. 
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Tie It All Together

Model: "sequential_2"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_5 (Dense)              (None, 512)               401920    
_________________________________________________________________
dropout_4 (Dropout)          (None, 512)               0         
_________________________________________________________________
dense_6 (Dense)              (None, 512)               262656    
_________________________________________________________________
dropout_5 (Dropout)          (None, 512)               0         
_________________________________________________________________
dense_7 (Dense)              (None, 512)               262656    
_________________________________________________________________
dropout_6 (Dropout)          (None, 512)               0         
_________________________________________________________________
dense_8 (Dense)              (None, 10)                5130      
=================================================================
Total params: 932,362
Trainable params: 932,362
Non-trainable params: 0

https://github.com/marcinwolter/MachineLearning2020/blob/main/mnist_mlp_minimal.ipynb 

https://github.com/marcinwolter/MachineLearning2020/blob/main/mnist_mlp_minimal.ipynb
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Program with more features

https://github.com/marcinwolter/MachineLearning2020/blob/main/mnist_mlp.i
pynb
 

● Visualization of results

● Plotting the Neural Network structure

https://github.com/marcinwolter/MachineLearning2020/blob/main/mnist_mlp.ipynb
https://github.com/marcinwolter/MachineLearning2020/blob/main/mnist_mlp.ipynb
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Summary

We have built our very first Deep Neural Network!!!
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