Looking forward to new physics and neutrinos at the LHC

Sebastian Trojanowski (AstroCeNT, CAMK PAN & NCBJ) Sebastian.Trojanowski@ncbj.gov.pl

Seminarium Oddziału Fizyki i Astrofizyki Cząstek, IFJ PAN October 13, 2020

Foundation for Polish Science European Union European Regional Development Fund

OUTLINE

- Motivation & Fundamentals
- FASER: ForwArd Search ExpeRiment at the LHC (idea and basic detector design)
- Far-forward BSM physics at the LHC
 - new physics production in the far-forward region of the LHC
 - selected BSM models
 - BSM particle production away from the ATLAS IP,
- High-Energy neutrino physics at the LHC
- Remarks about the SM backgrounds
- Additional opportunites
- DM direct detection at the LHC
- Forward Physics Facility
- Concluding remarks

MOTIVATION

LIGHT NEW PHYSICS

Exciting physics:

-- cosmology

```
(dark matter, inflation,
```

```
bariogenesis,...)
```

-- neutrino masses

```
(GeV-scale heavy neutral leptons)
```

```
-- (g-2)<sub>µ</sub>
```


FUNDAMENTAL EFFORTS

BSM: Light and Long-lived Particles

Forward SM & cosmic-ray physics

LHC WG on Forward Physics and diffraction (experiments, MC tools, theory)

Physics Beyond Colliders at the LHC (lots of theory studies, growing experimental effort)

High-energy neutrino physics

Emulsion Cloud Chamber (ECC) already tested in OPERA
Neutrino MC generators (GENIE, NuWro...),
will be improved with new data

More opportunities:

- Muon physics
- Direct DM detection
- Milli-charged particles

Far-forward physics program at the LHC

Run 3: FASER experiment HL-LHC opportunities: FASER 2, Forward Physics Facility

(to host more exps.)

J. L. Feng, F. Kling etal, Snowmass 2021 Lol

FASER EXPERIMENT

J.L. Feng, I. Galon, F. Kling, ST, 1708.09389 FASER Collaboration: 1811:10243, 1812.09139 1908.02310, 2001.03073

FASER - IDEA

FASER – small (~0.05 m³) and inexpensive (~1M\$) experiment detector to be placed few hundred meters downstream away from the ATLAS IP

to harness large, currently "wasted" forward LHC cross section

FASER LoI & TP: 1811:10243, 1812.09139 FASERv LoI & TP: 1908.02310, 2001.03073

BASIC DETECTOR LAYOUT

small civil engineering

FASERv – neutrino subdetector:

Emulsion film interleaved with tungsten layers (ECC); total volume 25 cm×25 cm×1.35 m

main FASER -- cylindrical detector: $L = 1.5 \text{ m}, R = 10 \text{ cm}, V = 0.05 \text{ m}^3, 150 \text{ fb}^{-1} (\text{Run 3})$

(possible upgrade) FASER 2: $L = 5 \text{ m}, R = 1 \text{ m}, V = 16 \text{ m}^3, 3 \text{ ab}^{-1}$ (HL-LHC)

FAR-FORWARD BSM PROGRAM

SEARCH FOR HIGHLY DISPLACED DECAYS

NEW PHYSICS FROM RARE PION DECAYS AT THE ATLAS IP

Soft pions going towards high- p_T detectors:

- produced LLPs would be too soft for triggers
- large SM backgrounds

HIDDEN SECTOR PORTALS

- new "hidden" particles are SM singlets (but gauged $U(1)_{B-L}$ etc. are also considered)

- interactions between the SM and "hidden" sector arise due to

mixing through some SM portal

$$\mathcal{L}_{\text{portal}} = \sum O_{\text{SM}} \times O_{\text{DS}}$$

B. Patt, F. Wilczek, 0605188

B. Batell, M. Pospelov, A. Ritz, 0906.5614

Renormalizable portalsPortalCouplingDark Photon, A_{μ} $-\frac{\epsilon}{2\cos\theta_W}F'_{\mu\nu}B^{\mu\nu}$ Dark Higgs, S $(\mu S + \lambda S^2)H^{\dagger}H$ Axion, a $\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}, \frac{a}{f_a}G_{i,\mu\nu}\tilde{G}_i^{\mu\nu}, \frac{\partial_{\mu}a}{f_a}\overline{\psi}\gamma^{\mu}\gamma^5\psi$ Sterile Neutrino, N $y_N LHN$ PBC report, 1901.09966

plethora of more complete models, neutral naturalness, mirror sector, ...

FASER Collaboration, 1811.12522

SELECTED SENSITIVITY REACH PLOTS

. -

 m_{ϕ} [GeV]

NOT ONLY ATLAS IP

J. L. Feng, I. Galon, F. Kling, ST, 1806.02348

LHC as a high-energy photon beam-dump (or light shining through a wall exp)

FAR-FORWARD NEUTRINO PROGRAM

FASER Collaboration, 1908.02310, 2001.03073

FASER_V – **NEUTRINO SUBDETECTOR (RUN 3)** Total 1000 emulsion films interleaved with 1-mm-thick tungsten plates ν -> Muons μ e v_e ν_{μ} v_{τ} Emulsion film Tungsten plate (1 mm thick) (25 cm x 25 cm) Lepton Lepton $\bar{\nu}$ ν

- Excellent spatial resolution (even 50nm),
- Can deal with high track density (up to 10⁶ tracks/cm²),
- Flux of through-going muons used to precisely align emulsion films, but also a potential source of muon-induced BG (neutral hadrons)

FASER Collaboration, 1908.02310

FAR-FORWARD NEUTRINOS

- LHC: lots of forward-going neutrinos from meson decays
- Measurement of the neutrino scattering cross section for $E_v \sim TeV$ (currently unexplored regime)
- Possible detection of 10-20 high-energy tau neutrino events

MUON NEUTRINOS (RUN 3)

PLANS for HL-LHC extension with ~10^5 total expected neutrino events

NEUTRINOS – ADDITIONAL OPPORTUNITIES

- Detailed event characteristics of ~TeV neutrino energy scatterings 📫 improved MC tools
- Interface detector charge measurement, disentangling v_{μ} and \overline{v}_{μ} for separate measurements
- Measuring neutrino flux and spectrum: further tuning of forward MC tools
- more BSM opportunities (F. Kling, 2005.03594, K. Jodłowski, ST, in preparation)

SM BACKGROUNDS

FASER Collaboration: 1811:10243, 1812.09139, 1908.02310

BACKGROUNDS – SIMULATIONS (FLUKA)

study by the members of the CERN FLUKA team:

	Cut T > 100 GeV		Cut	T > 500 GeV	Cut T > 1 TeV		
Part. type	fluence rate (cm ⁻² s ⁻¹)	fluence per bunch crossing per cm ²	fluence rate (cm ⁻² s ⁻¹)	fluence per bunch crossing per cm ²	fluence rate (cm ⁻² s ⁻¹)	fluence per bunch crossing per cm ²	
μ+	0.18	6.1·10 ⁻⁹	0.02	5.8.10-10	0.002	6.8.10-11	
μ-	0.40	1.3.10.8	0.22	7.4.10.9	0.14	4.6.10-9	
n _o	~ 10-7	~ 10 ⁻¹⁴	0	0	0	0	
γ	~ 10-4	~ 10 ⁻¹²	~ 10 ⁻⁶	~ 10 ⁻¹³	~ 10 ⁻⁶	~ 10 ⁻¹³	
π	~ 10 ⁻⁵	~ 10 ⁻¹²	~ 10 ⁻⁷	~ 10 ⁻¹⁴	0	0	

Other SM particles: detailed simulations, highly reduced rate (shielding + LHC magnets)

- The radiation level in TI18 is low ($<10^{-2}$ Gy/year), encouraging for detector electronics
- Showers in the nearby Disperssion Suppresor are suppressed due to the dispersion function of the machine at the FASER location.
- Beam-gas is suppressed due to the excellent vacuum of the LHC

• Particles produced at the IP are suppressed due to the 100m of rock in front of FASER (and the LHC magnets)

BACKGROUNDS – REDUCED MUON FLUX

Cross section of the tunnel containing FASER

At FASER location:

muon flux reduced along the beam collision axis (helpful role of the LHC magnets)

BACKGROUNDS FOR NEUTRINO PROGRAM

Muon-induced BG

Darticla	Expected number of particles passing through $FASER\nu$						
Farticle	$E > 10 { m GeV}$	$E > 100 { m ~GeV}$	E > 300 GeV	E > 1 TeV			
Neutrons n	27.8k / 138k	1.5k / 11.5k	150 / 1.1k	2.2 / 42			
Anti-neutrons \bar{n}	15.5k / 98k	900 / 9k	110 / 1.5k	2.8 / 46			

+ similar number of kaons, and less other neutral hadrons

$\nu_{\mu} + \bar{\nu}_{\mu}$ (signal int.)	23.1k	20.4k	13.3k	3.4k
---	-------	-------	-------	------

BG from neutral hadrons: different spectrum + no outgoing lepton

Muon neutrinos mimicing other neutrino flavors

- -- mostly controllable (based on outgoing muon identification)
- -- multivariate analysis to be employed for better identification

FURTHER OPPORTUNITIES

B. Batell, J. L. Feng, ST, in preparation

DM DIRECT DETECTION AT THE LHC

- Light dark matter particles can also be abundantly produced in the far-forward region
- They can scatter in the emulsion detector
- Neutrino-induced BG much reduced for light (BSM) vs heavy (Z/W bosons) mediator mass

 $m_v (= m_A/3)$ (GeV)

only ~5 expected BG events after cuts on the electron recoil energy and angle

- Muon-induced BG can be problematic
- need of active muon veto and/or strong sweeping magnet
 - thermal-relic target can be probed in HL-LHC in some popular models
 - + assuming 50cm x 50cm x 200cm detector

J. L. Feng, F. Kling, etal, Snowmass 2021 Lol

FORWARD PHYSICS FACILITY (HL-LHC)

- facility to host a number of experiments in the far-forward region of the LHC
- proposed as an extension of the FASER physics program during HL-LHC
- possible experiments currently considered include:
- FASER 2 and FASERv2 (FASER Collaboration, Snowmass 2021 Lol)
- DM direct detection experiment (either FASERv2 or other technology e.g. LAr, ...)

B. Batell, J.L. Feng, ST, in preparation

- MilliQan-type detector to search for milli-chrged particles

S. Foroughi, F. Kling, and Y.-D. Tsai, in preparation

FASER IN POPULAR CULTURE

related article

- Invisible decays of the SM Higgs, (J. L. Feng, I. Galon, F. Kling, ST, 1710.09387)
- High-energy neutrino scattering cross section measurments
- Prospects for independent studies of experimental anomalies (e.g. KOTO, F. Kling, ST, 2006.10630)

THANK YOU !

FASER AND SURROUNDING LHC INFRASTRUCTURE

INELASTIC P-P COLLISIONS

Almost impreceptible differences in reach for various MC tools $\overline{d} \sim s^{-2}$

$$N_{\rm sig} \propto \mathcal{L}^{\rm int} \, \epsilon^2 \, e^{-L_{\rm min}/\bar{d}} \quad \text{for} \ \bar{d} \ll L_{\rm min}$$

no of events grows exponentially with a small shift in ϵ

FASER reach unaffected by a small offset as long as the beam collision axis goes through the detector

FASER

FASER

CRMC package COMPARISON – VARIOUS MC TOOLS

CRUCIAL CONTRIBUTION FROM LHC FORWARD PHYSICS AND DIFFRACTION WG

DARK PHOTONS AT FASER – KINEMATICS

• physics reach insensitive to describing forward particle production with different MCs (EPOS, QGSJET, SIBYLL)

- typically $p_T \sim \Lambda_{QCD}$
- for E~TeV \implies p_T/E ~0.1 mrad
- even ~10¹⁵ pions per (θ ,p) bin

π⁰ → A'γ

high-energy π⁰
 collimated A's

• $\epsilon^2 \sim 10^{-10}$ suppression but still up to 10⁵ A's per bin • only highly boosted A's survive until FASER

- E_{A'} ~TeV
 further suppression from decay in volume probability
- still up to $N_{A'} \sim 100$ events in FASER,

mostly within FASER radius 32

PROBING INVISIBLE DECAYS OF THE SM HIGGS

$$\mathcal{L} \supset -m_{\phi}^2 \phi^2 - \sin heta rac{m_f}{v} \phi ar{f} f - \lambda v h \phi \phi$$

- trilinear coupling invisible Higgs decays $h \rightarrow \phi \phi$
- far-forward region: efficient production via off-shell Higgs, $B \rightarrow X_s h^*(\rightarrow \phi \phi)$
- can extend the reach in θ up to $10^{\text{-}6}$ for B(h $\rightarrow \phi \phi$)~0.1
- up to ~100s of events

1710.09387, PRD 97 (2018) no.5, 055034

FASER

MORE MODELS OF NEW PHYSICS

(table refers to the benchmark scenarios of the Physics Beyond Colliders CERN study group)

Benchmark Model	Label	Section	PBC	\mathbf{Refs}	FASER	FASER 2
Dark Photons	V1	IV A	BC1	[7]		\checkmark
B - L Gauge Bosons	V2	IV B		[30]	\checkmark	\checkmark
$L_i - L_j$ Gauge Bosons	V3	IV C		[30]		
Dark Higgs Bosons	S1	VA	BC4	[26, 27]		\checkmark
Dark Higgs Bosons with hSS	S2	VB	BC5	[26]		\checkmark
HNLs with e	F1	VI	BC6	[28, 29]		\checkmark
HNLs with μ	F2	VI	BC7	[28, 29]		\checkmark
HNLs with τ	F3	VI	BC8	[28, 29]	\checkmark	\checkmark
ALPs with Photon	A1	VIIA	BC9	[32]	\checkmark	\checkmark
ALPs with Fermion	A2	VIIB	BC10		\checkmark	\checkmark
ALPs with Gluon	A3	VIIC	BC11		\checkmark	\checkmark

Other models & FASER sensitivity studies e.g.:

- RPV SUSY (D. Drecks, J. de Vries, H.K. Dreiner, Z.S. Wang, 1810.03617)
- Inelastic dark matter (A. Berlin, F. Kling, 1810.01879)

See also

Batell, Freitas, Ismail, McKeen, 1712.10022, Bauer, Foldenauer, Jaeckel, 1803.05466; 1811.12522, Helo, Hirsch, Wang, 1803.02212, deNiverville, Lee 1904.13061, ...

SOME MORE COMPLETE MODELS

- SUSY

RPV with light bino-like neutralino and lepton number violating terms

J.C. Helo, M. Hirsh, Z.S. Wang, JHEP 1807 (2018) 056

RPC with some superWIMP LSP (e.g. superpartner of ALP, displaced decays ~B -> ~a γ) K.-Y. Choi, T. Inami, K. Kadota, I. Park, O. Seto, 1902.10475

- Right-handed neutrinos e.g.vMSM (v masses and oscillations, DM, baryon asymmetry) T. Asaka, S. Blanchet and M. Shaposhnikov, *Phys. Lett.* B631 (2005) 151–156 T. Asaka and M. Shaposhnikov, *Phys. Lett.* B620 (2005) 17–26

- gauge some global symmetry of the SM e.g. $U(1)_{Le-L\mu}$, $U(1)_{B-L}$, \longrightarrow new dark vector M. Bauer, P. Foldenauer, J. Jaeckel, JHEP 1807 (2018) 094 Kinetic mixing induced at a loop-level involving SM fermions

- dark photon mass from dark Higgs mechanism $\phi A'_{\mu}A'^{\mu}$

(both light vector and light scalar can be present) $\phi \rightarrow A'A'$, or dark Higgs can be radiated off dark photon leg – additional prod modes

- mirror sector / Twin Higgs scenarios

(hidden photons and neutrinos can naturally be light and weakly coupled to the SM

FASER