The universal structure of mountain ranges in the world

Jarosław Kwapień

Complex Systems Theory Department (NZ44) Institute of Nuclear Physics, Polish Academy of Sciences

Institute of Nuclear Physics Seminar, 9 October 2020

< ロ > < 同 > < 回 > < 回 >

Contributors:

- Jarosław Kwapień
- Paweł Oświęcimka
- Rafał Rak
- Paweł Zięba

Bartosz Głowacki

Praca Magisterska

Bartosz Głowacki

Kierunek studiów: Informatyka Stosowana

Specjalność: Modelowanie i analiza danych

Oprogramowanie do automatycznej detekcji przebiegu grani górskich na podstawie danych DEM

Opiekun: dr hab. Jarosław Kwapień

Kraków, Sierpleń 2016

イロト イポト イヨト イヨト

Contributors:

•	Stanisław Drożdż
٩	Jarosław Kwapień
۲	Paweł Oświęcimka

Rafał Rak

Paweł Zięba

Bartosz Głowacki

[R. Rak *et al.*, J. Compl. Net. **8**(1), Feb 2020] Journal of Complex Networks (2020) 1, Advance Access Publication on 6 May 2019, Issue Publication on 3 February 2020 doi: 10.1093/connet/cn.2017

Universal features of mountain ridge networks on Earth

RAFAŁ RAK

Faculty of Mathematics and Natural Sciences, University of Rzeszów, ul. Pigonia 1, 35-310 Rzeszów, Poland and Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Kraków, Poland

JAROSŁAW KWAPIEŃ[†]

Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland ¹Corresponding author: Email: jaroslaw.kwapien@ifi.edu.pl

PAWEŁ OŚWIĘCIMKA

Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

PAWEŁ ZIĘBA

Energy Business Intelligence Systems, Piłsudskiego 32, 35-001 Rzeszów, Poland

AND

STANISŁAW DROŻDŻ

Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland and Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, ul. Podchorążych 1, 30-084 Kraków, Poland

Edited by: Ernesto Estrada

[Received on 26 November 2018; editorial decision on 9 April 2019; accepted on 11 April 2019]

イロト イポト イヨト イヨト

Analyzed data

Shuttle Radar Topography Mission (2000)

- spatial resolution: 3" (meridional: \sim 90 m, zonal: \sim 90 * cos ϕ m)
- vertical resolution: 5-9 m, depending on a continent

Selected mountain ranges:

- Alps
- Baetic Mountains
- Pyrenees
- Scandinavian Mountains
- Atlas Mountains

- Appalachian Mountains
- Andes
- Himalayas
- Southern Alps

Range	Area (km ²)	Height (m)	Origin	No. data pts.
Alps	207,000	4,807	Orogenic	36,895,401
Baetic Mountains	100,000	3,478	Orogenic	11,255,768
Pyrenees	19,000	3,404	Orogenic	10,332,333
Scandinavian Mountains	243,000	2,469	Non-orogenic	138,497,654
Himalayas	594,400	8,848	Orogenic	40,295,462+
Southern Alps	36,700	3,724	Orogenic	23,619,193
Appalachian Mountains	531,000	2,037	Orogenic	208,854,395
Atlas Mountains	775,340	4,167	Orogenic	240,495,193
Andes	3,371,000	6,961	Orogenic	320,431,192+

Range	Area (km ²)	Height (m)	Origin	No. data pts.
Alps	207,000	4,807	Orogenic	36,895,401
Baetic Mountains	100,000	3,478	Orogenic	11,255,768
Pyrenees	19,000	3,404	Orogenic	10,332,333
Scandinavian Mountains	243,000	2,469	Non-orogenic	138,497,654
Himalayas	594,400	8,848	Orogenic	40,295,462+
Southern Alps	36,700	3,724	Orogenic	23,619,193
Appalachian Mountains	531,000	2,037	Orogenic	208,854,395
Atlas Mountains	775,340	4,167	Orogenic	240,495,193
Andes	3,371,000	6,961	Orogenic	320,431,192*

Range	Area (km ²)	Height (m)	Origin	No. data pts.
Alps	207,000	4,807	Orogenic	36,895,401
Baetic Mountains	100,000	3,478	Orogenic	11,255,768
Pyrenees	19,000	3,404	Orogenic	10,332,333
Scandinavian Mountains	243,000	2,469	Non-orogenic	138,497,654
Himalayas	594,400	8,848	Orogenic	40,295,462+
Southern Alps	36,700	3,724	Orogenic	23,619,193
Appalachian Mountains	531,000	2,037	Orogenic	208,854,395
Atlas Mountains	775,340	4,167	Orogenic	240,495,193
Andes	3,371,000	6,961	Orogenic	320,431,192 ⁺

<ロ> <四> <ヨ> <ヨ>

Range	Area (km ²)	Height (m)	Origin	No. data pts.
Alps	207,000	4,807	Orogenic	36,895,401
Baetic Mountains	100,000	3,478	Orogenic	11,255,768
Pyrenees	19,000	3,404	Orogenic	10,332,333
Scandinavian Mountains	243,000	2,469	Non-orogenic	138,497,654
Himalayas	594,400	8,848	Orogenic	40,295,462+
Southern Alps	36,700	3,724	Orogenic	23,619,193
Appalachian Mountains	531,000	2,037	Orogenic	208,854,395
Atlas Mountains	775,340	4,167	Orogenic	240,495,193
Andes	3,371,000	6,961	Orogenic	320,431,192*

J. Kwapień (NZ44)

<ロ> <四> <四> <三</td>

Range	Area (km ²)	Height (m)	Origin	No. data pts.
Alps	207,000	4,807	Orogenic	36,895,401
Baetic Mountains	100,000	3,478	Orogenic	11,255,768
Pyrenees	19,000	3,404	Orogenic	10,332,333
Scandinavian Mountains	243,000	2,469	Non-orogenic	138,497,654
Himalayas	594,400	8,848	Orogenic	40,295,462+
Southern Alps	36,700	3,724	Orogenic	23,619,193
Appalachian Mountains	531,000	2,037	Orogenic	208,854,395
Atlas Mountains	775,340	4,167	Orogenic	240,495,193
Andes	3,371,000	6,961	Orogenic	320,431,192*

J. Kwapień (NZ44)

ヘロト ヘアト ヘビト ヘビト

Range	Area (km ²)	Height (m)	Origin	No. data pts.
Alps	207,000	4,807	Orogenic	36,895,401
Baetic Mountains	100,000	3,478	Orogenic	11,255,768
Pyrenees	19,000	3,404	Orogenic	10,332,333
Scandinavian Mountains	243,000	2,469	Non-orogenic	138,497,654
Himalayas	594,400	8,848	Orogenic	40,295,462+
Southern Alps	36,700	3,724	Orogenic	23,619,193
Appalachian Mountains	531,000	2,037	Orogenic	208,854,395
Atlas Mountains	775,340	4,167	Orogenic	240,495,193
Andes	3,371,000	6,961	Orogenic	320,431,192 ⁺

Range	Area (km ²)	Height (m)	Origin	No. data pts.
Alps	207,000	4,807	Orogenic	36,895,401
Baetic Mountains	100,000	3,478	Orogenic	11,255,768
Pyrenees	19,000	3,404	Orogenic	10,332,333
Scandinavian Mountains	243,000	2,469	Non-orogenic	138,497,654
Himalayas	594,400	8,848	Orogenic	40,295,462+
Southern Alps	36,700	3,724	Orogenic	23,619,193
Appalachian Mountains	531,000	2,037	Orogenic	208,854,395
Atlas Mountains	775,340	4,167	Orogenic	240,495,193
Andes	3,371,000	6,961	Orogenic	320,431,192*

Range	Area (km ²)	Height (m)	Origin	No. data pts.
Alps	207,000	4,807	Orogenic	36,895,401
Baetic Mountains	100,000	3,478	Orogenic	11,255,768
Pyrenees	19,000	3,404	Orogenic	10,332,333
Scandinavian Mountains	243,000	2,469	Non-orogenic	138,497,654
Himalayas	594,400	8,848	Orogenic	40,295,462+
Southern Alps	36,700	3,724	Orogenic	23,619,193
Appalachian Mountains	531,000	2,037	Orogenic	208,854,395
Atlas Mountains	775,340	4,167	Orogenic	240,495,193
Andes	3,371,000	6,961	Orogenic	320,431,192 ⁺

J. Kwapień (NZ44)

Range	Area (km ²)	Height (m)	Origin	No. data pts.
Alps	207,000	4,807	Orogenic	36,895,401
Baetic Mountains	100,000	3,478	Orogenic	11,255,768
Pyrenees	19,000	3,404	Orogenic	10,332,333
Scandinavian Mountains	243,000	2,469	Non-orogenic	138,497,654
Himalayas	594,400	8,848	Orogenic	40,295,462+
Southern Alps	36,700	3,724	Orogenic	23,619,193
Appalachian Mountains	531,000	2,037	Orogenic	208,854,395
Atlas Mountains	775,340	4,167	Orogenic	240,495,193
Andes	3,371,000	6,961	Orogenic	320,431,192*

<ロ> <四> <四> <三</td>

Ridge axis detection

Ridge axis detection:

- Profile recognition and polygon breaking algorithm
- MST-based optimization

Ridge axis detection

Ridge axis detection:

- Profile recognition and polygon breaking algorithm
- MST-based optimization

イロト イヨト イヨト イヨト

Fractal dimension of the ridge maps

Box-counting fractal dimension:

- cover a ridge map with boxes of size \$;
- count the number n of boxes that contain a piece of a ridge line;
- repeatedly change the box size and calculate n(1);
- plot In n(I) vs. In I.

A ridge map is fractal if the following relation holds: $n(I) \sim I^{-D}$, where *D* is the box-counting dimension.

Fractal dimension of the ridge maps

- two scaling regimes: I < 20 and I > 20;
- the cross-over scale of $l \approx 20$ equals to ≈ 2 km;
- ۰ a fractal ridge-line structure with 1.2 < D < 1.3 below 2 km:
- a space-filling structure with $1.8 \le D \le 2.0$ above 2 km:
- similar results were reported for the drainage networks.

< ロ > < 同 > < 回 > < 回 >

Range	$D_{ m small}$	D_{large}	d_f
Alps	1.20	1.84	1.65 ± 0.11
Baetic Mountains	1.20	1.93	1.70 ± 0.13
Pyrenees	1.25	1.89	1.61 ± 0.14
Scandinavian Mountains	1.24	1.94	1.62 ± 0.12
Himalayas	1.32	1.94	1.68 ± 0.12
Southern Alps	1.21	1.84	1.68 ± 0.11
Appalachian Mountains	1.24	1.96	1.65 ± 0.10
Atlas Mountains	1.25	1.97	1.65 ± 0.10
Andes	1.22	1.95	1.66 ± 0.11

J. Kwapień (NZ44)

8/26

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

Definition:

Nodes T₁: ridge bifurcation points

イロト イヨト イヨト イヨト

Definition:

- Nodes T₁: ridge bifurcation points
- Nodes T₂: ridge ends

イロト イヨト イヨト イヨト

Definition:

- Nodes T₁: ridge bifurcation points
- Nodes T₂: ridge ends
- Edges: connect two neighbour nodes along a ridge

イロト イヨト イヨト イヨト

Definition:

- Nodes T₁: ridge bifurcation points
- Nodes T₂: ridge ends
- Edges: connect two neighbour nodes along a ridge

イロト イヨト イヨト イヨト

Networks

Topographic networks

Topological properties:

- Acyclic and connected
- Number of nodes $(T_1 + T_2)$: 95, 356 $\leq N_T \leq 2,550,922$
- Maximum node degree: $6 \le k_{\rm T} \le 8$
- Network diameter: 1, 148 $\leq D_{\rm T} \leq 6, 574$
- Average path length: $461 \le L_T \le 2,434$ (11.5 $\le \ln L_T \le 13.8$)
- Decentralized (no hubs)
- Without the small-world property

Definition:

Definition:

Definition:

Definition:

Definition:

J. Kwapień (NZ44)

イロン イ理 とく ヨン イヨン

Topological properties:

- Acyclic and connected
- Number of nodes: 50, 027 $\leq N_{\rm R} \leq 1, 686, 481$
- Maximum node degree: $852 \le k_{\rm R} \le 5,330$
- Network diameter: $21 \le D_R \le 26$
- Average path length: $8.7 \le L_R \le 9.6$ (10.8 $\le \ln L_R \le 13.2$)
- Highly centralized
- Small-world networks

ヘロト ヘロト ヘヨト ヘヨト

-

Topological properties:

Acyclic and connected

- Number of nodes: $50,027 \le N_R \le 1,686,481$
- Maximum node degree: $852 \le k_{\rm R} \le 5,330$
- Network diameter: $21 \le D_R \le 26$
- Average path length: $8.7 \le L_R \le 9.6$ (10.8 $\le \ln L_R \le 13.2$)
- Highly centralized
- Small-world networks
- Scale-free node degree distributions $P(X > k_{\rm R}) \sim k_{\rm R}^{-\beta}$ with $1.6 \le \beta \le 1.7$

Figure: (A) Alps, (B) Baetic Mnts., (C) Pyrenees, (D) Scandinavian Mnts., (E) Himalayas, (F) Southerns Alps, (G) Appalachians, (H) Atlas, (I) Andes, (J) all mountains.

Networks

Self-similarity

Box-covering algorithm for identifying network self-similarity:

[C. Song et al., Nature 433, 392-395 (2005)]

define a length parameter I;

- split the network into clusters such that a minimum path between any two nodes is $d \le l 1$;
- calculate the number of the clusters: N_c;
- choose different seed nodes and calculate (N_c);
- replace each cluster with a single node (renormalization) and repeat the previous steps;
- calculate $\langle N_c(l) \rangle$;

A network is self-similar if $\langle N_c(l) \rangle / N \sim l^{-d_f}$.

Self-similarity

Topographic networks:

- self-similar with universal $d_f \approx 1.7$ for l > 5
- no other model approximates better the data

イロン イ理 とく ヨン イヨン

Self-similarity

Topographic networks:

- self-similar with universal $d_f \approx 1.7$ for l > 5
- no other model approximates better the data

Ridge networks:

• exponential relation: $\langle N_c(l) \rangle \sim e^{-l/2}$ for $l \leq 25$

Figures: (A) Alps, (B) Baetic Mnts., (C) Pyrenees, (D) Scandinavian Mnts., (E) Himalayas, (F) Southerns Alps, (G) Appalachians, (H) Atlas, (I) Andes

Multiscale self-similarity

Sandbox algorithm for identifying network multifractality:

[J.-L. Liu et al., Chaos 25, 023103 (2015)]

- define a radius parameter r;
- calculate a distance matrix describing the path lengths for all the node pairs;
- select a random seed node;
- count the number of nodes that fall inside a circle of radius r centered at the seed node;
- repeat the node counting for different values of r and calculate n(r);
- choose different seed nodes and calculate the average (n(r));
- calculate the generalized fractal dimensions D_q for some range of q values by using the formula:

 $D_q = \lim_{r \to \infty} \frac{\ln \langle [n(r)/N]^{q-1} \rangle}{(q-1)\ln(r/d)}.$

A network is multifractal if D_q depends on q.

Multiscale self-similarity

Topographic networks:

Multiscale self-similarity

Topographic networks:

Networks

Universality

Why are the mountain-related networks self-similar or scale-free?

イロト イヨト イヨト イヨト

Why are the mountain-related networks self-similar or scale-free?

- The terrain surface is self-similar with fractal dimension $2.3 \le D \le 2.6$.
- The elevation contour lines are self-similar with fractal dimension $1.0 \le D \le 1.7$.
 - [B. Klinkenberg, K.C. Clarke, in: Automated Pattern Analysis in Petroleum Exploration, pp. 201-212 (Springer, 1992)].

Why are the mountain-related networks self-similar or scale-free?

- The terrain surface is self-similar with fractal dimension $2.3 \le D \le 2.6$.
- The elevation contour lines are self-similar with fractal dimension $1.0 \le D \le 1.7$.

[B. Klinkenberg, K.C. Clarke, in: Automated Pattern Analysis in Petroleum Exploration, pp. 201-212 (Springer, 1992)].

 Optically, the ridge structure of a typical mountain range looks self-similar and resembles a mathematical fractal.

Why are the ridge-valley systems fractal?

- The drainage systems are typically dendritic and fractal.
- The dendritic, self-similar drainage systems form minimum spanning trees minimizing the energy dissipation.
- The drainage channels can form optimal trees if the terrain structure is locally easily erodable.

Drainage system formation:

J. Kwapień (NZ44)

イロト イヨト イヨト イヨト

Drainage system formation:

J. Kwapień (NZ44)

イロト イヨト イヨト イヨト

Networks

Universality

Drainage system formation:

・ロト ・聞 ト ・ ヨト ・ ヨト

Conclusions

Conclusions:

- The ridge maps are self-similar with $1.2 \le D \le 1.3$ on short spatial scales below 2 km and almost space-filling with $1.8 \le D \le 2.0$ on long spatial scales above 2 km.
- The topographic networks are self-similar with a common scaling exponent $d_f \approx 1.7$.
- The ridge networks are small-world and scale-free with a common scaling exponent $1.6 \le \beta \le 1.7$.
- No trace of multiscaling was identified on the binary network level; on the other hand, by allowing for the weighted edges, multifractality can be observed.
- These values are roughly invariant under changing the mountain range irrespective of the range's height, area, drainage patterns, and origin.

Future directions:

- Searching for a relation between the ridge structure and the scaling exponents: β and d_f .
- Studying weighted network representations of the mountain ridges for .
- Developing a network growth model that can reproduce the ridge and valley system formation.