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Outline

This lecture is not a complete course in particle
physics and will only touch some most general
problems.

Further reading:

e D. H. Perkins, “Introduction to High Energy

This is an “introduction”
® Historical overview.

® the elementary particles Physics”,
° the elementary forces ® F Halzen, A. Martin: “Quarks and Leptons”.
® Symmetries: Further lecture to watch listen on SM and BSM
® Gauge symmetry physics:
® Problem of mass _ ® Prof. Yuval Grossman (Cornell U.)
* Spontaneous symmetry breaking e Standard Model and Flavor - Lecture
(https://www.youtube.com/watch?v=
GGzRdiBd8w8)
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Andr;

R ratio :Quarks electric charge, number of QCD
charges (colors)

R is the ratio of the hadronic cross section to the muon cross section in electron—positron
collisions:
R— o (e e~ —hadron)

T o(etem —putuT)

1

3|
5

R also provides experimental confirmation of the electric charge of quarks, in particular
the charm quark and bottom quark, and the existence of three quark colors. A simplified
calculation of R yields

R=3Y ¢,

where the sum is over all quark flavors with mass less than the beam energy. eq is
the electric charge of the quark, and the factor of 3 accounts for the three colors of the
quarks. QCD corrections to this formula have been calculated.
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The main standard model verticies

STRONG

quazk e YYTII

gluon

NSNS

electron, _
mu, tau >/\ /\ \/\ e,
> \ \/\ Y
At low energy: =
neutrino 9 1317 \/ /\ \/ \ Vo Vu Vi
e =— 70
Strong: 29
All quarks (and g, Weak neutral current: Weak charged current:
anti-quarks) charged particles All particles All particles
;\Ilaovg:?nge °f " No change of flavourNo change of flavour  Flavour changes
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Feynman diagrams revisited

The Feynman diagrams give us the amplitude,
[Tl c.f. ¢y in QM whereas probability is [y|?

(1) So, two electro-magnetic vertices:
e.g. ee" —uutamplitude gets factor from each vertex \/E\/E =a

Crosssection gets amplitude squared cc a’

for e€* —qqg with quarks of charge q (1/3 or 2/3) o (QN/E\/E)Z =qzafz
*Also remember : u,d,s,c,t,b quarks and they each come in 3 colours
*Scattering from a nucleus would have a Z term

(2) If we have several diagrams contributing to same process,
we much consider interference between them e.g.

. (b) e e
= el
\e\*\ Same final state, get terms for (a+b)?=a**b?+ab+ba
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Quantum Chromodynamics (QCD)

QED — mediated by spin 1 bosons (photons) coupling to conserved electric charge
QCD - mediated by spin 1 bosons (gluons) coupling to conserved colour charge

u,d,c,s,t,b have same 3 colours (red,green,blue), so identical strong interactions
[c.f. isospin symmetry for u,d], leptons are colourless so don't feel strong force

+*Significant difference from QED:
* photons have no electric charge
* But gluons do have colour charge — eight different colour mixtures.

Hence, gluons interact with each other. Additional Feynman graph vertices:

Self-interaction
4-gluon

These diagrams and the difference in size of the coupling constants are responsible
for the difference between EM and QCD
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Running constant in QED

Charge +Q in dielectric medium

@@ Molecules nearby screened,
@ At large distances don't see full charge
@ Only at small distances see +Q

Also happens in vacuum — due to spontaneous production of virtual e*e pairs

e’ And diagrams with
Y two loops ,three loops....
el |e each with smaller effect: o,02....
O | QED - small variation
e
) ) 1/128
As a result coupling strength grows with |g?| of photon, 1137
higher energy =smaller wavelength gets closer to bare charge 0 | (90GeV)?
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Running constant in QCD

*Exactly same replacing photons with gluons and electrons with quarks
*But also have gluon splitting diagrams

This gives anti-screening effect.

gg Coupling strength falls as |g? increases
g
Grand Unification ?
d o o . Resolution [m]
1 10° 16 10° 10°
smmglh\

015

| Strong variation in strong coupling e

£7,
Loty
g,
e
o,

LEPQCDWG preliminary

o From a,~ 1 at |g? of 1 GeV?
LEP data To a4 at |g? of 10* GeV?

0.13

g

5I)

. \i\ Hence: i

*Quarks scatter freely at

o TT\H_\# hlgh energy 0 119: GoF 4d® Eng;ymw;

01 N = 4907

*Perturbation theory converges very
| Slowly as a,~ 0.1 at current expts
| } ““““ . | And lots of gluon self interaction diagrams

0.08 .
50 100 120 140 160 180 200 220
Ecp [GeV]
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Range of strong forces

Gluons are massless, hence expect a QED like long range force

But potential is changed by gluon self coupling W

Qualitatively:
QED Form of QCD potential:

a
—- 475
VQCD =-3 + kr
r
@ Coulomb like to start with,
but on ~1 fermi scale energy

sufficient for fragmentation
Field lines pulled into strings
By gluon self interaction
QCD - energy/unit length stored in field ~ constant.
Need infinite energy to separate qgbar pair.
Instead energy in colour field exceeds 2m,and new
g gbar pair created in vacuum

Standard EM field

This explains absence of free quarks in nature.

Instead jets (fragmentation) of mesons/baryons
NB Hadrons are colourless, Force between

hadrons due to pion exchange. 140MeV—1.4fm
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Weak interaction

processes related to change flavor (quark decay) J
e
noptre+v, W N M
d > *
G ; \\ v+te—-v+te z
u »> \\ u
neutron 3 e e

proton
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Weak neutral current discovery - indirect evidence of

ZO

1 €— Outgoing

neutrino

<

y
e o\
2

e O\

1

1

I

I

I Shower of

! particles due to
| bremstrzhiung
I

!

1

I

|

+ &— Collision
point.

€— Incoming

1
1
]
I
I
|
I
[l
1 neutrino

P ~, 4 -
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W and Z° discovery

Rubbia and van der Meer were prompty awarded the 1984 Nobel Prize in Physics.
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Number of generations?

40

OPAL

e Determination of the Z° line-
shape:

® Reveals the number of ‘light
neutrinos’

Cross-section (nb)

% Fantastic precision on Z°
parameters

* Corrections for phase of moon,

water level in Lac du Geneve,
passing trains,... 0

L L
88 89 90 91 92 93 94 95
Centre-of-mass energy (GeV)

N, 200 Existence of only 3 neutrinos\
Mz,  91.1852+0.0030 GeV

® Unless the undiscovered neutrinos
2.4948 +0.0041 GeV have mass m_,>M,/2
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Partons are reality !!!

New “Rutherford” like experiments, but with much higher energy.
probing structure of proton itself J

Large q
e

Hard, point-like
Constituents,
behaving as if they are free particles
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Partons are reality !!!

New “Rutherford” like experiments, but with much higher energy.
probing structure of proton itself

D

1
xfg(X)
X1y
0.8 XfA(X)
xt(x)
0.6
0.4
0.2
) k
0
0 0.2 0.4 0.6 0.8 1

X
The probability density for finding a particle with
The scattering particle only sees the valence a certain longitudinal momentum fraction x at
partons. At higher energies, the scattering resolution scale g?. inside proton.
particles also detects the sea partons.
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Cabibo Kobayashi Maskawa matrix (CKM)

d Vud VUS Vub d uﬂm
s'| = Ved Ves Vol -|s
. VCKMVEKM =1
b Vid Vis Vi b
weak CKM matrix mass
eigenstates eigenstates

Magnitude

of elements
complex

in O(13)
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Cabibo Kobayashi Maskawa matrix (CKM)

d ! Vud Vus Vub d

Unitarit
s'| =l Ved Ves Vol S .
. VexuVerku =1
b Vid Vis Vi b
weak CKM matrix mass
eigenstates eigenstates

O
o
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Mixing of neutral mesons

As result of the quark mixing the Standard Model predicts
oscillations of neutral mesons:

B < B
o —— Ut
B; ducti' “uc:l‘b"-:Té'J B I Wi } ng
b—q—quww—-d—d b . —db— d
u,c,t

Similar graphs for other neutral mesons:

Neutral mesons: ‘P°>; K° =|ds) D° =|dc) BY :‘dE) B? :‘SE>
P): K°=|ds) D°=|ac) B =|db) B) =|sh)

discovery of mixing 1960 2019 1987 2006
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Mixing of neutral mesons

s KO0 =3 KO transition
- Note 1: Two W bosons required (AS=2 transition)

- Note 2: many vertices, but still lowest order process...

K, Anti-K°

d

Andrzej Bozek IFJ PAN, Krakéw PHD lectures, November 19, 2020 17 /1



08
06
04

02

1.2

08

06

04

02

02

Neutral Kaons system

After the lifetime of the K| the K° consists
entirely out of K's, which are essentially
Expectation an equal mixture of K° and K%

Initially pure K° beam
/P(KM K")
Measurement
— E,‘a.a KO . d W =
\P(KOAKO) %o - e’ v, an - e,
2 1 ; : Los [ self-taggin
2 4 6 8 10 €05 ] AAm gging
0.4
P(K" = K")- P(K" = K° s b -
PO “r) ~ecosamt
J CPLEAR
01
ok
=0.1
0 5 10 15 t 20 2
7.
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Discret Symmetries

@ Three fundamental discrete Symmetries:
e Parity (P) = Space inversion: X — —X
@ Charge Conjugation (C) = particle — antiparticle
e Time Reversal (T) = Time inversion: x5 — —Xg

@ CPT Theorem:

Assuming only local interactions, Lorentz invariance and
Causality the product of the three symmetriesC x P x T
is always a symmetry.

@ ... this is always true for a Lagrangian field theory
(with causal particle propagators)
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The History of CP

o Historically it was believed that all three discrete
symmetries hold separately

@ First revolution:
1956 Lee and Yang suggest P violation
quickly experimentally confimed by Wu et al.
@ ... CP was still believed to be conserved,
@ until 1964:

@ Second Revolution:
Cronin and Fitch discover CP violation
CPT theorem: CP Violation = T Violation
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The Weak force and C,P parity violation

* What about C+P = CP symmetry?
- CP symmetry is parity conjugation (x,y,z = -x,-v,Z)
followed by charge conjugation (X = X)

_I.
v e
“Intrms;c 100% P violation:
spin All v's are lefthanded
All v's are righthanded
+ P atl € ..

be preserved
in weak
interaction!

@®
#l CP appears to
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A first look at CP violation in Kaons

@ There are two different neutral Kaons:
|K®) = |3d) and |K®) = |ds)
@ They are pseudoscalar particles:
P|K® = —|K?) and P|K% = —|K?)
@ Charge conjugation is g ++ @, hence

C|K% =|K%  and C|f'<°) = |K%)

|Ks) = 7(\K° K) and |Ki)=

. (|K°> +|K®))

S\
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A first look at CP violation in Kaons

@ Kaons decay either into two or three pions
(in an S wave state)

@ CP Quantum numbers of the (neutral) final states
CP|rrr) = |rm) and CPl|rwm) = —|nnm)
@ Assuming CP Conservation:

|Ks) — |7m) and |Ks)-A|mrm)
|KL)#|mm) and  |KL) — |7wm)

@ Cronin and Fitch: |Ky) — |7)
@ We are back to CPT as the only real symmetry
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A first look at CP violation in Kaons

The kaons are produced in mass eigenstates:

~ K% sd

— | K%: ds
The CP eigenstates are:

- CP=+1: |K;>=I/2(IK°> -1 K">)

- CP=-1:  IK,>=I/V2(IK" + | K?>)
The kaons decay as short-lived or long-lived kaons:

— IKg>: predominantly CP=+1  |K)= =
1+ a’{’

— |K,;>: predominantly CP= -1 |KL>=_|K2)+£|KI>‘
£ ,||1+|:{:

; E(;z*:r-imK,_)
-z <:r*;r’IH1K5)

1,.=(2.236 £ 0.007) x 103
lel = (2.232 £ 0.007) x 1073
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CP Violation in weak interactions

@ Kaons decay either into two or three pions
(in an S wave state)

@ CP Quantum numbers of the (neutral) final states
CP|rrr) = |rm) and CPl|rwm) = —|nnm)
@ Assuming CP Conservation:

|Ks) — |7m) and |Ks)-A|mrm)
|KL)#|mm) and  |KL) — |7wm)

@ Cronin and Fitch: |Ky) — |7)
@ We are back to CPT as the only real symmetry
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CP Violation in weak interactions B-factory

@ In 2000: The B Factories go into operation:

@ First observation of non-Kaon CP Violation

@ CP Violation in the B system is in (almost too good)
agreement with the predictions of KM:
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Why we need CP violation

@ CP is needed to generate the Baryon-Antibaryon
Asymmetry of the Universe: A = ng,, — ng,; # 0

@ The Sakharov Conditions: (Sakharov 1967)

@ Baryon number violation: H.s(A # 0) # 0

@ CP violation: (i — f) # (i — f)

© Absence of thermal equilibrium: Time is
irrelevant in equilibrium, hence CPT implies CP

@ The fundamental theory has to have CP violation
@ NB: The SM has H.(A #0) #0
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P transformation

@ Parity P: X — —X

@ There has to be an operator P in Hilbert Space
o If Pis a symmetry: P|O) =|0) [H,P]=0

@ Scalar Field:

PC:D(X()?)?)Pf = (Q(X(). —X;)

@ Vector Field:

PA°(xo, X)P! = A°(xo, —X)

. . : /) iy PPt — =
PA' (X, X)PT = —A'(xo, —X) } PA*(xo, X)P' = A, (X0, —X)
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P transformation

@ Spinor field:

Pi)(xo, X)P ':q b(Xo, —X)
PY(Xo, X)PT = 9(xo, —X)70

@ This is designed such that ¢'(x),v(x) behaves like a
VeCtOI‘ field Homework: check this!

@ P invariance means that the action is invariant:

PSP =8
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C transformation

@ Charge Conjugation C: particle « antiparticle
@ There has to be an operator C in Hilbert Space
o If Cis a symmetry: C|0) =|0) [H,P]=0
@ Scalar Field:

Co(x)CT = ¢(x)'

@ Vector Field:
CA“(x)CT = —A*(x)

@ Spinor Field:

Cy(x)Ct = C(d(x))"
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CP violation from complex couplings

@ Assume that the Lagrange operator is

L(x) = Z ai0;(x) +he. =Y (a;(’),-(x} + a,’-‘O,T(x))

i

@ Assume: The O; behave like complex scalar fields

CPL(x)CP' =Y (a,o*( )+ & o,(x)) X = (X0, —%)

CPSCP —S= —2f/d4X Z (Ima,- O,‘(X] — Ima;O,T(x))

CP violation, if one of the couplings is complex !
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CP in the Standard Model

There are two sources of CP violation in the SM:
@ CKM CP violation: CP Violation encoded in the quark
(and lepton) mass matrices

@ Strong CP violation: CP violation through the vacuum
structure of QCD

@ (1) is phenomenologically confirmed
@ (2) remains an open question
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Structure of the Standard Model

@ SMis a chiral gauge theory: Left and right handed
components of fermions are in different multiplets

@ — Implementation of Parity Violation

e — Fermion mass terms require symmetry breaking!

Linass = m";f_wﬁ +h.c.

@ There are three quarks with electric charge +2/3e:
Up-type quarks

@ There are three quarks with electric charge —1/3e:
Down-type quarks
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Structure of the Standard Model

@ All quarks are known to be massive
— we need both left and right handed components

up Ur d dr
U, = Cp Up = Cr D= S Dgr = Sp
I tp b, br

@ Mass terms: Two 3 x 3 mass matrices:
Lunass = Uy - M, -Ug + Dy - My - Dp

@ M, and M, originate from spontaneous symmetry
breaking:
My, = Yu(v) Mg= Yq(v)
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Structure of the Standard Model complex phases

@ Origin of CKM-like CP violation:
Quark Mass Matrices = Quark Yukawa Couplings

@ The two mass matrices do not commute:
[MUa Md] ?é 0

@ Relative rotation of the Eigenbases of M, vs. M,:
CKM matrix VCKM

Mﬁiag = VgKM ) Mgmg - Vekm
@ The CKM matrix is unitary:

V(]:‘LKM ’ VC](M =1= VCKM = VCTKM
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Structure of the Standard Model CKM matrix

@ Express everything in terms of mass eigenstates:
Redefinition of the fields

D' = Vexm - D

@ The CKM matrix reappears ONLY in the charged
current interaction

Lec = U(+* W;t) - Vekm - D +hec.

@ Usual definition

Vud Vus Vub
Voekrr = | Vea Vs Vo
Vie Vis Vo
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CKM complex phases and CP violation

Why complex phases matter

s CP conjugation of a W boson vertex involves complex

conjugation of coupling constant

W

N

Above process violates CP if V , =V, *

e With 2 generations Vj is always real and V,,=V;*

W

b F——=
8 V;th 8 V*ub

i

* With 3 generations V;; can be complex - CP violation

built into weak decay mechanism!
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CKM interpretation

Vud Vus Vub
VCKM = vcd Vcs Vcb

Ve Vis Vi

@ Off diagonal zeros of Vi, Voxm = 1 = Verm Vi
Ve V:d + Vb ng + Vi Vt:f =211,

@ ViVom=1:{ VipVis+ Vo Vi + VbV =0
Vus VJd o Vcs V;d i Vts V;& =0
V. V;& + Vs V;; + Vi Vt?) =0

@ VoV =1:{ VuaViy+ VsV + Vip Vi =0
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Wolfenstein Parametrisation of CKM

@ Diagonal CKM matrix elements are almost unity

@ CKM matrix elements decrease as we move off the
diagonal

@ Wolfenstein Parametrization:
1-)2/2 A NA(p —in)
Veokm = —A 1-2%/2 A<A
NA —p—in) —X2A 1

@ Expansionin A =~ 0.22 up to \®
@ A, p, n of order unity
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CKM triangle interpretation

Deriving the triangle interpretation

* Starting point: the 9 unitarity constraints on the CKM

matrix
V ~ud' V ~c'd V *Id ‘/un‘ vur V;rh O 0
V+V = V*m V*:.'.( V*u’ Vcd Vr( ‘/!'b 1 0
*uk ¥ ~'f.‘b v *rb 1/!'5’ Vm Vrb 0 ]'

s Pick (arbitrarily) orthogonality condition with fi,j)=(3,1)

Vz;vd + ‘/c:o‘/(d s V:ZVrd =0

u
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CKM triangle interpretation -visualisation

o Sum of three complex vectors is zero -
Form triangle when put head to tail

(Wolfenstein params to order 1%)

=1 AL —p—in)

{IJ .m‘

VoV =AX (p+in)

VIV, = AR -(=4)

o " oed
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CKM triangle interpretation -visualisation

» Phase of '‘base’ is zero - Aligns with ‘real’ axis,

=1- A1 -p—in)

rb m‘

‘/rrb el AR? (JD+IH)

V.V

ch " oed

=A% (-A)
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CKM triangle interpretation -visualisation

e Divide all sides by length of base

(o)

‘i Eid

=(1-p-in)

V:;ng N (p 2z :‘?) K-b‘/cd
(0,0) vy (1,0)
c: o l
L]d:l vcd'

e Constructed a triangle with apex (p,n)
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CKM triangle interpretation -visualisation

Im

Im
r
p+in
Vi Vi
ViV e
L ViisVis
VepVed ViVid @ T
Vi Ved =,
ViiaVis
&
o B R Y g /
T e, +— Re
1

@ Definition of the CKM angles a, 8 and v
@ To leading order Wolfenstein:

Vib = |Vinle™ Vi = |Vi|e™?

all other CKM matrix elements are real.
@ 4~ is order \®
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CKM triangle interpretation -visualisation

* We can now put this triangle in the (p,n) plane

1 T T T
I Am, 1
0.8 Am,/Am, .
3 yi
0.6 |- V,,
‘ [ hYid . .
= i - T =(l—-p—in)
04 EK v’uh‘/ud ~ (p 4 U]‘} e b " od
[ ‘/;';:Vm{! ) & ’:‘ y
L = S ‘:‘LJ ‘~
02} Vi Val B
ol L =
| 0.5 0.5 ‘ 1
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CKM triangle interpretation -visualisation

* We can now put this triangle in the (p,n) plane

1 T T T
I Am, 1
0.8 Am,/Am, .
3 yi
0.6 |- V,,
‘ [ hYid . .
= i - T =(l—-p—in)
04 EK v’uh‘/ud ~ (p 4 U]‘} e b " od
[ ‘/;';:Vm{! ) & ’:‘ y
L = S ‘:‘LJ ‘~
02} Vi Val B
ol L =
| 0.5 0.5 ‘ 1
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The Standard Model Lagrangian

+L,. . +

inetic iggs ukawa

LSM = LK'

* Liinetic + * Infroduce the massless fermion fields
+ Require local gauge invariance =» gives rise to existence of gauge bosons

. l'Higgs - * Introduce Higgs potential with <¢=> # 0 } Gy =SUQ) = SUQ2), xU 1), = SUB)=U(1),,

« Spontaneous symmetry breaking The W+, W-Z" bosons acquire a mass

* Lyukawg - * Ad hoc interactions between Higgs field & fermions
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The Standard Model Lagrangian field notation
Q=TysY

Fermions: y, ={I_Ty5]w 3 W =[]+—;"-]ty with w=Q,, up dp L, Iy v

Under SUZ

Quarks: teraction rep.
u'(3,2,1/6) = O /(13 2, 1/5)
. ! Li
d'(3,2,1/6) ) ;

/ Tsu e SU{Q Hypercharge Y
{=avg el.charge in multiplet)

Lett harded doublets
Fight hander singlets

generation
handed index
e u;,(3,1,2/3) e dy(3,1,-13)
" P
Leptons: o [ ¥ (272 = I},;(1,2,-1Y2)
0,212 s i
s LILL=D) . (vk)
Scalariekl: , 4, 3,12)= [z) riton sy s e
number
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Andrzej Bozek IFJ PAN, Krakéw

The Standard Model Lagrangian field notation

Explicitly:
* The left handed quark doublet :

1 ! I
", , u_v 2 Uy,
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= Similarly for the quark singlets:
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* The left handed leptons: LL (1,2.-1/2) =[ ; ] ,[
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- And similarly the (charged) singlets: [, (1,1, =1) =€y, 16, 7%
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The Standard Model Lagrangian kinetic term
Loy =1 +L +

Kinetic Higgs ukawa

Kinetic

: Fermions + gauge bosons + interactions

Procedure:
Introduce the Fermion fields and demand that the theory is local gauge invariant under
SU(3)x8U2) x UL )y transformations.

Start with the Dirac Lagrangian: L =7 (6" y  )w

Replace: 0" — D" =0"+ig G'L +igW/'T, +ig'B"Y

Fields: G“" 18 gluonS
W,k - weak bosons: W,, W,, W,
Bv : hypercharge boson

Generators: L, : Gell-Mann matrices: %22, (3x3) SU(3)g
T, : Pauli Matrices: 21, (2x2)  SU(2),
Y : Hypercharge: U(t)y

For the remainder we only consider Electroweak: SU(2), x U(1 )y Niels Tuning
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The Standard Model Lagrangian The Higgs potential
L.,=L +L

Kinetic Higgs ukawa

L =D D9V, Vigy =312 (99) 12 (0'8)

Broken
w V() Symmetry V@
Ju > 0 ‘ul <0
[0
<p>=0 o] | ]
Ve
0

v= - A~ 246 Gev

=Y

Spontaneous Symmetry Breaking: The Higgs field adopts a non-zero vacuum expectation value

Procedure: g @' | _(Reg +i3mg' Substitute:  9p° = vH’
o) | Reg +iTmg’ 2

1. Gy, (SUG)x8SUQ2), xU(), ) = (SUB)-xU),, )
2. The W+ W, Z" bosons acquire mass
3. The Higgs boson H appears

(The other 3 Higgs fields are "eaten” by tha W, Z bosans)
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The Standard Model Lagrangian

i LHig 7S + ukawa

Lo =L

i Kinetic

*Lginetic - *Introduce the massless fermion fields
*Require local gauge invariance - gives rise fo existence of gauge bosons
= CP Conserving

* Lijiggs - *Introduce Higgs potential with <¢= # 0 Gy = SUR) % SUQ), xU ), = SUB) xU D)y
«Spontaneous symmetry breaking The W+, W-Z" bosons acquire a mass

< CP Conserving

* Lyykawa - “Ad hoc interactions between Higgs field & fermions
=» CP violating with a single phase

*Lyytawa — Liass - * fermion weak eigenstates:

- mass matrix is (3x3) non-diagonal
+ fermion mass eigenstates: 2
- mass matrix is (3x3) diagonal = CP-conserving!

} =» CP-violating

* Lgineric 1n mass eigenstates: CKM — matrix = CP violating with a single phase
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Flavor diagonal CP violation

@ Flavour diagonal CP Violation is well hidden: chee wis:
e.g electric dipole moment of the neutron:
At least three |00pS (Shabalin)

w
“-\A/"i, aS G% [n‘rz 3
; de ~ 86— —5 - ImA
N 4 i dj N e T (1 671—2)2 1 ma ji
%,Ww J\"}’\W”JS ~ 10~*2ecm with i ~ 0.3GeV

dey < 30x10*ecm
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Strong CP violation

Mg and My* do not
necessarily have real eigenvalues
@ Using mass eigenstates

- :Z/_[{_ . Mﬂiag -Ugr +Zx_{ﬁv- M‘;iaﬁ U +U D
— TP, (Wiag+ Mgiagf) B T - (Mgiag B Mgiagf) U
@ The term U~sU should not be there!
@ Can be removed by a chiral transformation:
U—exp(—ibs)U U D

iag
6 = ArgDetM with M = ( Mg Mgi“g )
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Strong CP violation

if the chiral transformations were a symmetry
@ This is only classically true
@ QFT: The Chiral symmetry is anomalous!

8, (Unpuysld) = Unys - MEPE .1 + 2= 4 GG,

™

and the same for D.

@ Hence: Removing the ~5 term generates a new term
in the SM action:

S — S — i(Arg DetM) f d*x G‘“” aGa
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Strong CP violation

Quantum Theory modifies QCD

JC EQCD + \9 —_— G‘w aGa

1
@ Hence the dynamics depend only on
= # — Arg DetM

@ This solves certain problems, but it creates new ones
e G"2GE, breaks P as well as CP!
@ |t generates a neutron electric dipole moment

dy! ~107"%ecm di* <1.1 x 107%ecm

@ Strong CP Problem: Why is § < 10-°*" so small?
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The Standard Model

The Standard Model of Particle Physics

Spin 1
(Gauge Bosons)

Spin 0

(Higgs Boson)

Spin 1/2
(Fermions)

<—Hyporchargo (R)

< Weak Isospin (R)
-~ Electric Charge

Q-Y4T,

Hypercharge (L) >

Hypercharge —»Y

Weak Isospin-—» T, Electic Charge Weak Isospin (L) =

Gauge boson- Q-YeT, Gauge boson
coupling

coupling

A
s " Lefthanded (2
douvlt\ 1/, SU) doublet \ 1/
RA

s
W
.
Left handed

SU(2) doublet \ -1/,
A

Unbroken Symmetry

SUB)coi0n SUR),eer Uyysencnance

i

wE = (Whiw?) Ve
0,W? —sin6,B

~ = sin 6, W + cos 6, B

—

Broken Symmetry

SU(B)goi0n

.
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Neutrinos: beta decays

Example:

Neutrino mass effects on the
spectrum endpoint

Pauli hypotesis (1932): the presence of a new particle could save the

energy conservation of:
* Energy

* Momentum Neutrino hypotesis!

* Angular momentum
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Neutrinos: discovery

In a nuclear power reactor, antineutrinos come from {3 decay of radioactive nuclei
produced by 2¥U and 23U fission. And their flux is very high.

= +
1. The antineutrino reacts Ve p = ne S
with a proton and forms n =

and e’ L0
2. The e*annihilates o £ s A
immediately in gammas >‘ ; T it
W t d saintliator
3. The n gets slowed down c: den:iaur:n o | e esencoen i
and captured by a Cd
nucleus with the emission of ) Fe
gammas (after several Liquid > ‘
microseconds delay) scintillator i i o |

4. Gammas are detected by the scintillator:

the signature of the event is the delayed

- + -3 2
gamma signal 0 (Vep-) ne ) ~ 10 cm

1956: Reines and Cowan at the Savannah nuclear power reactor
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Neutrinos: mixing
Pontecorvo, 1957

- Neutrinos can modify their flavor while travelling.
. This is the neutrino oscillation phenomenon.

sounce]—=— [oerecron|
2000

he lyscill tion probability

Bruno Pontecorvo

oscillation
(A1 = 2 amplitude "
R
The phenomenon depends Qo= A€ | -
I amz
on oscillation paramaters.
illati
IT REQUIRES THAT NEUTRINOS  froquancy AMZ = M2-m;?

ARE MASSIVE.
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Recapitulation
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