$\boldsymbol{\Phi}(\mathbf{1 0 2 0})$ meson Polarisation study

Two reference frames \Rightarrow depending on the z -axis definition

Helicity frame:

Fight direction of the $\boldsymbol{\Phi}$ meson in the overall centre-of-mass frame

Collins Soper frame:

The bisector of the angle between the beam and the opposite of the other beam in $\boldsymbol{\Phi}$ rest frame

$$
W(\cos \vartheta) \propto \frac{1}{3+\lambda_{\vartheta}} \cdot\left[1+\lambda_{\vartheta} \cdot \cos ^{2} \vartheta\right]
$$

$$
\begin{aligned}
& W(\varphi) \propto 1+\frac{2 \lambda_{\varphi}}{3+\lambda_{\vartheta}} \cdot \cos 2 \varphi \\
& W(\widetilde{\varphi}) \propto 1+\frac{\sqrt{2} \lambda_{\theta \varphi}}{3+\lambda_{\vartheta}} \cdot \cos \widetilde{\varphi} .
\end{aligned}
$$

- $\left(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\theta \varphi}\right)=(0,0,0,) \longrightarrow$ no polarisation at all;
$-\left(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\theta \varphi}\right)=(-1,0,0,) \longrightarrow$ longitudinal polarisation;
$-\left(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\theta \varphi}\right)=(1,0,0,) \longrightarrow$ transverse polarisation.

Two reference frames \Rightarrow depending on the z -axis definition

Helicity frame:

Fight direction of the $\boldsymbol{\Phi}$ meson in the overall centre-of-mass frame

Collins Soper frame:

The bisector of the angle between the beam and the opposite of the other beam in $\boldsymbol{\Phi}$ rest frame

$$
W(\cos \vartheta) \propto \frac{1}{3+\lambda_{\vartheta}} \cdot\left[1+\lambda_{\vartheta} \cdot \cos ^{2} \vartheta\right] \nabla
$$

$$
\begin{aligned}
W(\varphi) & \propto 1+\frac{2 \lambda_{\varphi}}{3+\lambda_{\vartheta}} \cdot \cos 2 \varphi \\
W(\widetilde{\varphi}) & \propto 1+\frac{\sqrt{2} \lambda_{\theta \varphi}}{3+\lambda_{\vartheta}} \cdot \cos \widetilde{\varphi} .
\end{aligned}
$$

- $\left(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\theta \varphi}\right)=(0,0,0,) \longrightarrow$ no polarisation at all;
- $\left(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\theta \varphi}\right)=(-1,0,0,) \longrightarrow$ longitudinal polarisation;
$-\left(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\theta \varphi}\right)=(1,0,0,) \longrightarrow$ transverse polarisation.

Invariant mass distribution of $\mathrm{K}+\mathrm{K}$ - pairs

Raw distribution in $\operatorname{Cos} \theta$ bin

Efficiency X acceptance

hCostheta_0.5 1.0

hCostheta 101.5

hCostheta_1.5 2.0

Efficiency corrected $\mathrm{dN} / \mathrm{d} \cos \theta$

