

Measurement of Non prompt J/♥ in Pb-Pb collisions at 5.02 TeV

Himanshu Sharma

Institute of Nuclear Physics, Polish Academy of Sciences (IFJPAN), Krakow

Sep 15th, 2020

ALICE-IFJ Meetings

Description of R(x) in ML-fits

Reconstructed Prompt Jpsi

Description of R(x) in ML-fits

Reconstructed Prompt Jpsi

Description of R(x) in ML-fits

- Reconstructed Prompt Jpsi
- Bin-width has been increased by 2-times due to stats
- Most time consuming is construction of F_bkg(x) templates
- ML-fit with all templates for 5.0 < pT < 7.0: $f_B = 0.17 \pm O(0.01)$

Fit-range is \pm 0.3 cm but zoomed at \pm 0.1 cm

Efficiencies:

Quark-Matter '19 preliminary (xBai) @ pass1

hsharma @ Pass1

- For the error propagation, I used baysian-approach here (Suggested by Arvind) Ana-note link
- **Used for Phi-analysis**

$$\sigma\varepsilon = \sqrt{\frac{k+1}{n+2}\left(\frac{k+2}{n+3} - \frac{k+1}{n+2}\right)}$$

Efficiencies:

PbPb - 2.76 TeV

hsharma @ Pass1

For the error propagation, I used baysian-approach here (Suggested by Arvind) Ana-note link

9 10 p_{_}(e+e-)[GeV/c]

Used for Phi-analysis

$$\sigma\varepsilon = \sqrt{\frac{k+1}{n+2}\left(\frac{k+2}{n+3} - \frac{k+1}{n+2}\right)}.$$

dE/dX in Data-MC:

TPC dE/dx vs. inner param P

TPC dE/dx vs. inner param P

