HF jets analysis

14.07.2020 ALICE@IFJ meeting

Sebastian Bysiak

Outline

1. Progress in HF-jets analysis

- Lund diagrams \& its projections

Lund diagrams

Lund diagrams

full LHC15n statistics

Ratio of Lund diagrams

jets with score $>0.80,0<\mathrm{E}_{-} \mathrm{rad}<100 \mathrm{D}, \mathrm{Nsplit}-32962.0$

ratio
ets with score $>0.80,0<\mathrm{E}_{-}$rad <1000, Nsplit-32962.0

b-jets
full LHC15n statistics
inclusive jets, $0<$ E_rad <1000, Nsplit $=1751233.0$

inclusive

Projections

Considered variables:

- $\min k_{T}$
- $E_{\text {radiator }}$ and p_{T} range
- b-tagger working point

considered k_{T} cuts: $(1 / 2,1,2) * \Lambda_{Q C D}(=200 \mathrm{MeV})$ which corresponds to $\ln \left(k_{T} / \mathrm{GeV}\right)=\quad(-2.3,-1.6,-0.9) \quad$ https $/ / / \operatorname{larxivora/ldifi2004.05968.\text {Ddf}}$
bins of $E_{\text {radiator }}$ and set: $5>p_{T}>50 \mathrm{GeV} / \mathrm{c}$
WP: threshold $=0.8 \sim$ mistagging rate $=1 \%$

any E
 radiator

\boldsymbol{k}_{T} cut $=1 / 2 * \Lambda_{\mathrm{QCD}}$

$\Lambda_{\text {QCD }}$

2 * $\wedge_{\text {OCD }}$

$5<E_{\text {radiator }}<15 \mathrm{GeV}$

\boldsymbol{k}_{T} cut $=1 / 2 * \Lambda_{\mathrm{QCD}}$

$\Lambda_{\text {QCD }}$

2 * $\wedge_{\text {OCD }}$

$15<E_{\text {radiator }}<35 \mathrm{GeV}$

ALICE

\boldsymbol{k}_{T} cut $=1 / 2 * \Lambda_{\text {QCD }}$

$\Lambda_{\text {QCD }}$

2 * $\wedge_{\text {QCD }}$
$5-15 \mathrm{GeV}$ * mass_b / mass_c $=16-48 \mathrm{GeV}$ so maybe this is the most relevant bin?

Next steps, discussion

what is effect of grooming?
is there any dead-cone in PYTHIA?
relation of Erad vs jet pt
data-MC ratio of Lund planes
check how sensitive to $\mathrm{p} T$ range we are (on MC)

Next steps?

ALICE

- data - MC diff <-1. DONE
- built x-section <-2. (response matrix etc)
- angular structure <-3. DONE?
- more pp data <-4.
analysis note <-0. (BEFORE HOLIDAY)

BACKUP/TODO: projections

ALICE

Final results will be probably shown as projections on $\ln (1 / \Delta)$ binned by E_radiator and with cut on low k_{T}
considered k_{T} cuts: $(1 / 2,1,2)$ * $\Lambda_{Q C D}(=200 \mathrm{MeV})$ which corresponds to $\ln \left(k_{T} / \mathrm{GeV}\right)=\quad(-2.3,-1.6,-0.9) \quad$ https://arxiv.org/pd//2004.05968.pdf
"The suppression of the low angle emission probability for b-tagged radiators relative to inclusive ones is of order 80% at $\ln (1 / \theta)=2$, which approximately corresponds 0.14 radians. The corresponding suppression for c-tagged radiators is of order 20\%." https://arxiv.org/pdf/1812.00102.pdf

BACKUP: \#jets in data

\#jets in LHC15n:
45 mln total
$854 \mathrm{kpt}>5$
$147 \mathrm{kpt}>10$
18k pt > 20
$1100 \mathrm{pt}>40$

