

HF jets analysis

23.06.2020 ALICE@IFJ meeting

Sebastian Bysiak

Sebastian Bysiak (IFJ PAN)

HFJ analysis

Outline

- 1. Progress in HF-jets analysis
 - efficiency & contamination corrections
 - closure test on MC
 - "Barlow test" uncorrelated error under change of threshold

Outline

- 1. Progress in HF-jets analysis
 - efficiency & contamination corrections
 - closure test on MC
 - "Barlow test" uncorrelated error under change of threshold

Reminder: problem source

Sebastian Bysiak (IFJ PAN)

HFJ analysis

Reminder: suggestion to split correction

total correction =
$$\frac{N_{MC}^{true \ b}}{N_{MC}^{b-tagged}} = \frac{TP+FN}{TP+FP}$$

eff. correction = $\frac{N_{MC}^{true \ b}}{N_{MC}^{true \ b-tagged}} = \frac{TP+FN}{TP}$
contamination correction = $\frac{N_{MC}^{true \ tagged-b}}{N_{MC}^{b-tagged}} = \frac{TP}{TP+FP}$

total correction = (eff. corr) x (contamination corr.) but it's still useful to judge if obtained corrections are reasonable and which factor is more significant

Correction factorized

Sebastian Bysiak (IFJ PAN)

HFJ analysis

Sketches of factorized corrections

Outline

- 1. Progress in HF-jets analysis
 - efficiency & contamination corrections
 - closure test on MC
 - "Barlow test" uncorrelated error under change of threshold

Closure test

- two identically generated MC samples: test one (pseudo data) and second used to calculate corrections
- we want to reproduce true value in test sample
- relatively simple test, if it fails then we should worry
- 500k for both test ("pseudo-data") and corrections samples
- differences w.r.t. previous plots:
 - the fraction of b-jets is exactly the same in each pt bin
 - the threshold values are adjusted separately for each bin
 - 3 WPs considered: mistagging rate = 3%, 1%, 0.1%

Closure test

the errorbars include 2 sources:

 poissonian error from uncorrected ratio and
correction uncertainty from bootstrap sampling they give more less similar contribution

variation of roughly 5% (σ) between truth and 3 WPs

Sebastian Bysiak (IFJ PAN)

Closure test: wrong b-fraction

What if our assumed b-fraction is wrong?

- strong dependence on choice of WP
- purest sample is much closer to truth <-- eff. corr. does not change with b-fraction and contamination corr. is smallest for this WP this is strong argument against high eff. / low purity WP

Outline

- 1. Progress in HF-jets analysis
 - efficiency & contamination corrections
 - closure test on MC
 - "Barlow test" uncorrelated error under change of threshold

Test how much our main results changes under variation of the threshold value WPs share data so uncorrelated errors will be used $\sqrt{\sigma^2 - \sigma_{ref}^2}$

Procedure (for single pT bin):

- 1. select reference WP (mistag. rate = 1%)
- 2. vary it by 20% of efficiency in both directions to get boundaries for considered thresholds range (similarly as in <u>L_c analysis with BDT</u>)
- 3. calculate value and sigma for 10 WPs between boundary and reference WP
- 4. subtract in quadrature

https://arxiv.org/pdf/hep-ex/0207026.pdf

https://indico.cern.ch/event/591374/contributions/2511753/attachments/1429002/2193943/01_PWA-Barlow.pdf

Sebastian Bysiak (IFJ PAN)

HFJ analysis

Sebastian Bysiak (IFJ PAN)

HFJ analysis

<u>18</u>

pT = 30-40 GeV/c: for b-fraction = 3-4% the variation by 20% of tagging efficiency fits within reference uncertainty (equal ~10% so not huge)

Test passed unless corrections are derived from invalid MC

https://arxiv.org/pdf/hep-ex/0207026.pdf https://indico.cern.ch/event/591374/contributions/2511753/attachments/1429002/2193943/01_PWA-Barlow.pdf

Next steps? (discussion)

- data MC diff <- 1.
- built x-section <- 2. (response matrix etc)
- angular structure <- 3.
- OR more pp data <- 4.

analysis note <- 0. (BEFORE HOLIDAY)

file:///home/sebbys/Downloads/apply on data-corrections -Copy1.html

Sebastian Bysiak (IFJ PAN)

HFJ analysis

5%

0.5

0.6

0.7

model score threshold

90

0.9

0.8

Closure test: wrong b-fraction, realistic ~x2

Sebastian Bysiak (IFJ PAN)

HFJ analysis

model with aligned pT distribution

Sebastian Bysiak (IFJ PAN)

HFJ analysis

ICE

b-fraction (raw vs corrected)

- the same ordering is observed in both raw and corrected b-fraction -- somehow the corrections are <u>too weak</u>
- results very stable across many models with changed hyperparameters / input vector

problem source (corrected b-fraction, different MC mix)

Sebastian Bysiak (IFJ PAN)

HFJ analysis