Non-Prompt J/psi Analysis

PbPb @ 5.02 TeV

Himanshu Sharma

Apr 28th, 2020

IFJ - ALICE Meetings

• Progress on Fitting for Non-prompt Fraction

Procedure

• Basic Idea to maximize

$$lnL = \sum_{i=1}^{N} lnF(x^i, m^i_{e^+e^-})$$

(1)

•

 $\begin{array}{ccc} F(x^i,m^i_{e^+e^-}) \rightarrow \text{Likelihood Function} \\ & \rightarrow \text{Probability of observing a } J/\Psi \text{, given } x^i \text{ and } m^i_{e^+e^-} \\ \sum & \rightarrow & \text{Sum over all the } J/\psi \text{ candidates} \end{array}$

• Unbinned 2-dim likelihood fit function

$$F(x, m_{e^-e^+}) = f_{sig}.F_{sig}(x).M_{sig}(m_{e^+e^-}) + (1 - f_{sig}).F_{bkg}(x).M_{bkg}(m_{e^+e^-})$$

$$F_{sig} = f'_B.F_B(x) + (1 - f'_B).F_{Prompt}(x)$$

$$X-distribution$$
for Prompt-Jpsi

• Function to Fit :

$$F(x, m_{e^-e^+}) = f_{sig} \cdot [f'_B \cdot F_B(x) + (1 - f'_B) \cdot F_{Prompt}(x)] \cdot M_{sig}(m_{e^+e^-}) + (1 - f_{sig}) \cdot F_{bkg}(x) \cdot M_{bkg}(m_{e^+e^-})$$

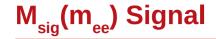
 f'_B & $f_{sig}(=\frac{S}{(S+B)})$ are free parameters.

- X = pseudo-proper decay length
- m=invariant mass reconstructed from pairs
- Observing either signal or bkg J/psi

All the PDFs are defined in the Ana-note.

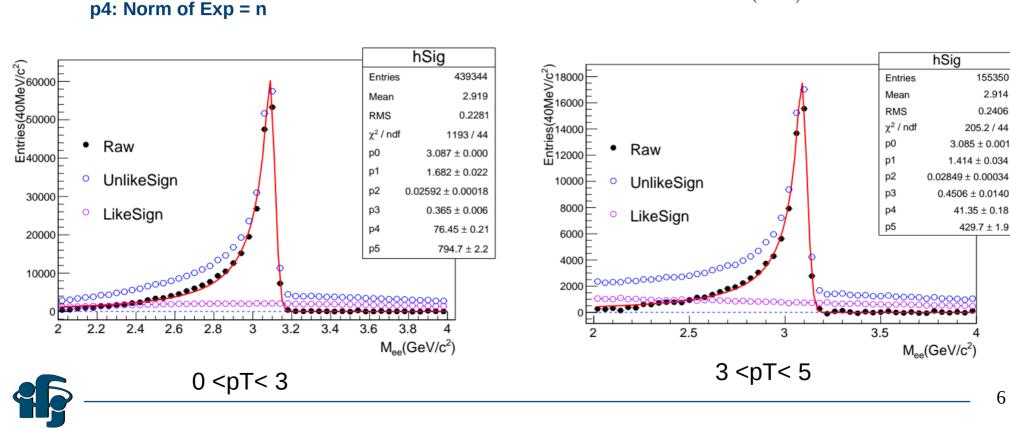
According to the previous slide (last bullet)

- We need 5 templates PDFs for the 2-dim (m_{ee} , x) fitting of the Likelihood function.
 - $M_{sig}(m_{ee})$: template for Invariant Mass of J/ Ψ -Signal (taken from MC)
 - $M_{_{bkq}}(m_{_{ee}})$: template for Inv. Mass Combinatorial Background.
 - R(x) : Resolution function depends on p_{τ} , Hits on SPD's Ist layer (taken from MC) ~ $F_{Prompt}(x)$
 - $F_{B}(x)$: template for Non-prompt J/ Ψ (from MC)
 - F_{bkg}(x) : template for fitting x-Background (on data)

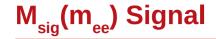


According to the previous slide (last bullet)

- We need 5 templates PDFs for the 2-dim (m_{ee} , x) fitting of the Likelihood function.
 - M_{sig}(m_{ee}) : template for Invariant Mass of J/Ψ-Signal (taken from MC)
 - M_{bka}(m_{ee}) : template for Inv. Mass Combinatorial Background.
 - R(x) : Resolution function depends on p_T, Hits on SPD's Ist layer (taken from MC)
 ~ F_{Prompt}(x)
 - $F_{B}(x)$: template for Non-prompt J/ Ψ (from MC)
 - F_{bkg}(x) : template for fitting x-Background (on data)


 $f(m^{e^+e^-};\alpha,n,\bar{m},\sigma,N) = N \cdot \begin{cases} \exp(-\frac{(m^{e^+e^-}-\bar{m})^2}{2\sigma^2}) & \text{for } \frac{m^{e^+e^-}-\bar{m}}{\sigma} > -\alpha \\ A \cdot (B - \frac{m^{e^+e^-}-\bar{m}}{\sigma})^{-n} & \text{for } \frac{m^{e^+e^-}-\bar{m}}{\sigma} \leqslant -\alpha \end{cases}$

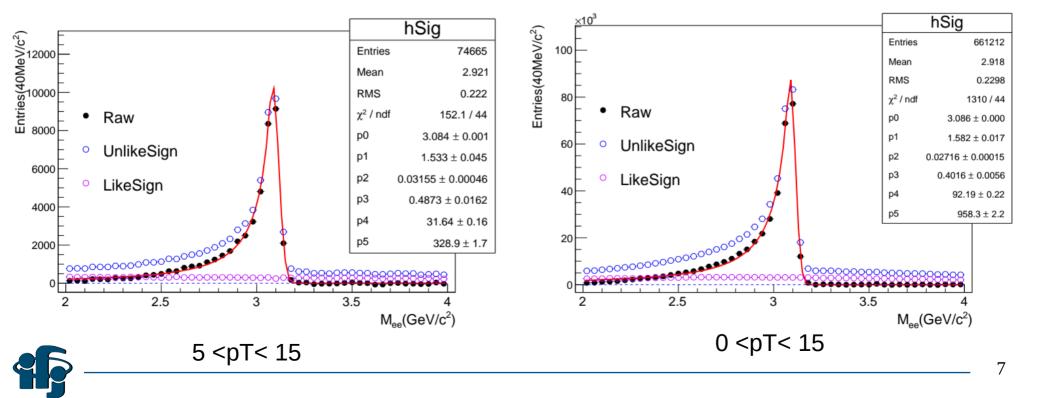
Fit on MC sample (with Injected Jpsi)


p0: Mean, p1: Sigma, p2: Alpha, p3: Norm,

and where the coefficients are:

$$A = \left(\frac{n}{|\alpha|}\right)^n \cdot \exp\left(-\frac{|\alpha|^2}{2}\right) \qquad B = \frac{n}{|\alpha|} - |\alpha| .$$

2.914


 $f(m^{e^+e^-}; \alpha, n, \bar{m}, \sigma, N) = N \cdot \begin{cases} \exp(-\frac{(m^{e^+e^-} - \bar{m})^2}{2\sigma^2}) & \text{for } \frac{m^{e^+e^-} - \bar{m}}{\sigma} > -\alpha \\ A \cdot (B - \frac{m^{e^+e^-} - \bar{m}}{\sigma})^{-n} & \text{for } \frac{m^{e^+e^-} - \bar{m}}{\sigma} \leqslant -\alpha \end{cases}$

• Fit on MC sample (with Injected Jpsi)

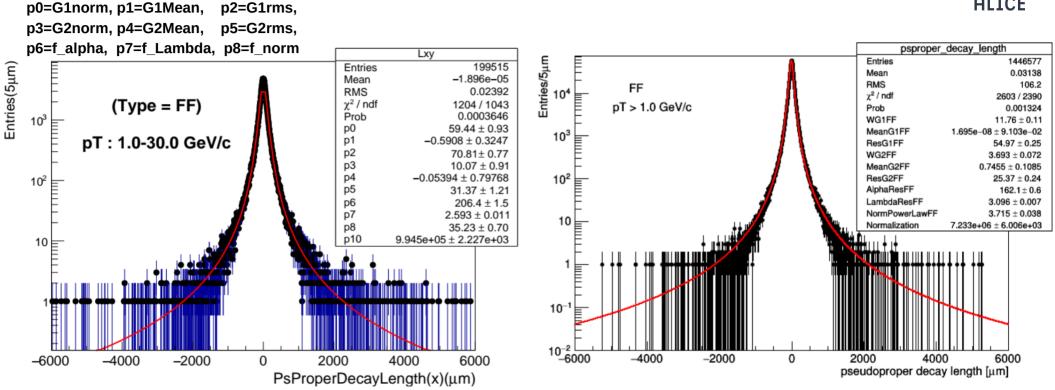
and where the coefficients are:

$$A = \left(\frac{n}{|\alpha|}\right)^n \cdot \exp\left(-\frac{|\alpha|^2}{2}\right) \qquad B = \frac{n}{|\alpha|} - |\alpha| .$$

- R(x) is measured as a function of pT(Jpsi) and type of J/psi.
 - Transverse Impact parameter $d_0(r,phi)$ resolution depends on the pT. (see backup)
- Therefore, RMS of R(x) depends strongly on the pT of J/psi.
 - Going from higher to lower pT, it increases
 In lower pT, the d0 (r,phi) resolution is worse than high-pT.
- Significantly, the hits in SPD layers varies the precision of tracking the daughters.
- Fitted on the x-distribution Reconstructed Prompt Jpsi in MC, In different pT regions.
- Fitted using BtoJPSI classes.
- Compared with the analysis pp 5TeV, 13TeV by Fiorella (pp Analysis-note)

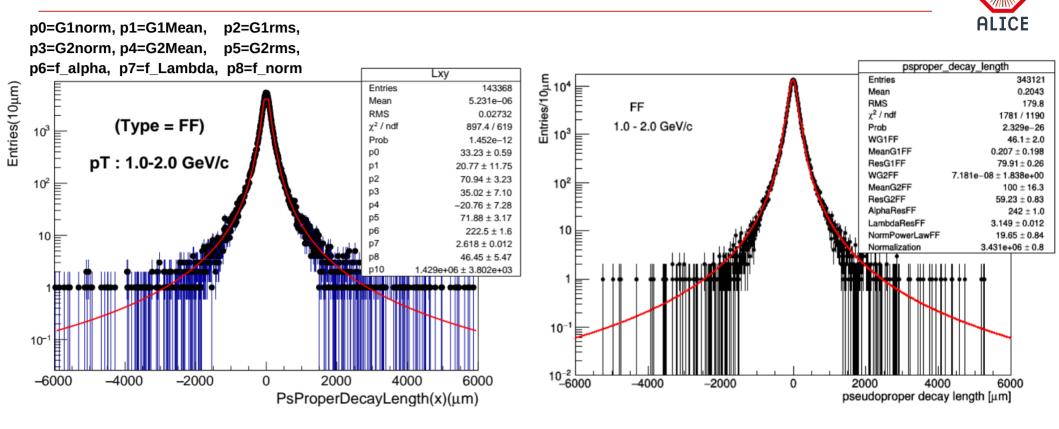
$$\mathbf{R}(x) = w_1 \cdot \mathbf{G}_1(x; \boldsymbol{\mu}_1, \boldsymbol{\sigma}_1) + w_2 \cdot \mathbf{G}_2(x; \boldsymbol{\mu}_2, \boldsymbol{\sigma}_2) + w_3 \cdot f(x; \boldsymbol{\alpha}, \boldsymbol{\lambda}) ,$$

where the two functions G_1 and G_2 are gaussian functions:


$$G(x;\mu,\sigma) = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

while the symmetric power law term has the stepwise form:

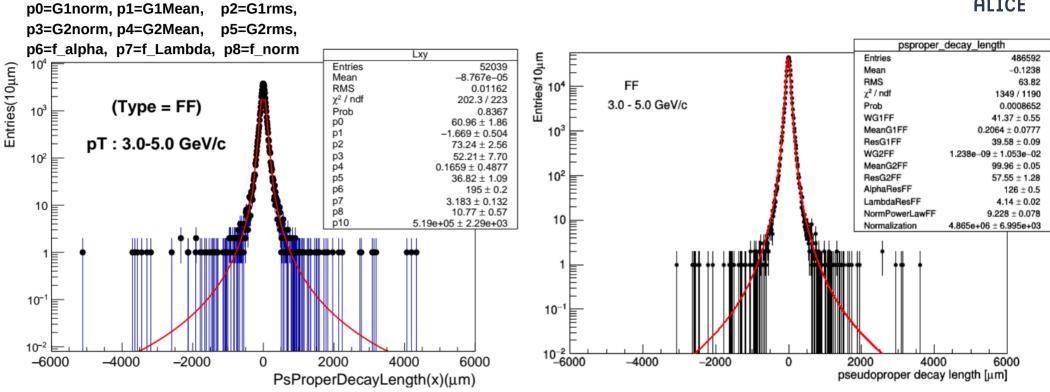
$$f(x; oldsymbol{lpha}, oldsymbol{\lambda}) = egin{cases} rac{\lambda-1}{2lpha \lambda} & |x| < oldsymbol{lpha} \ rac{\lambda-1}{2lpha \lambda} oldsymbol{lpha} |x|^{-oldsymbol{\lambda}} & |x| > oldsymbol{lpha} \end{cases}$$



Fiorella pp-5-13TeV

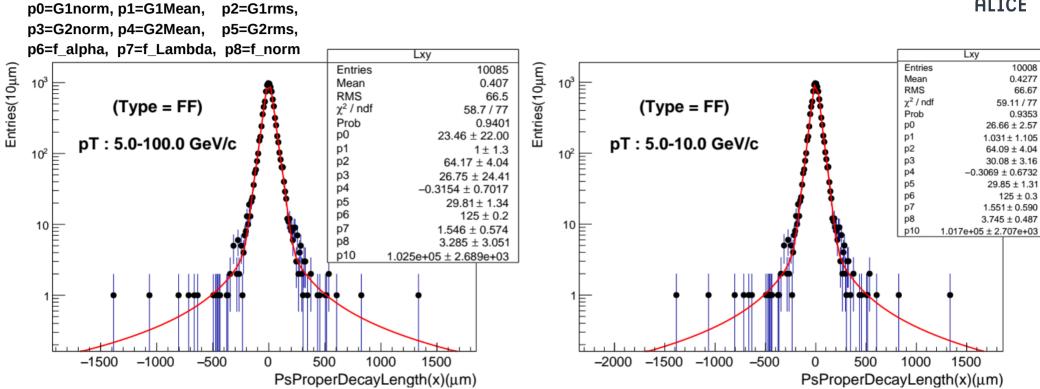
Fiorella pp-5-13TeV

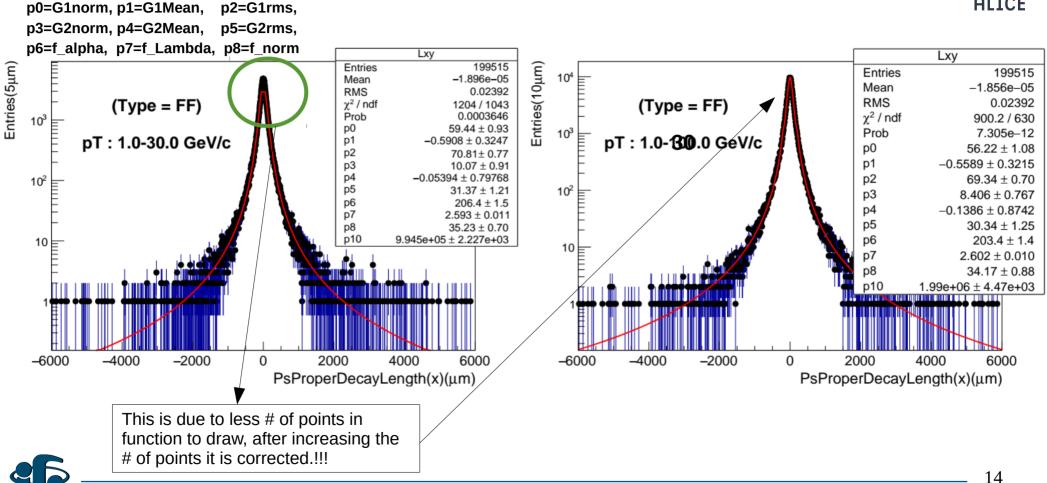
10

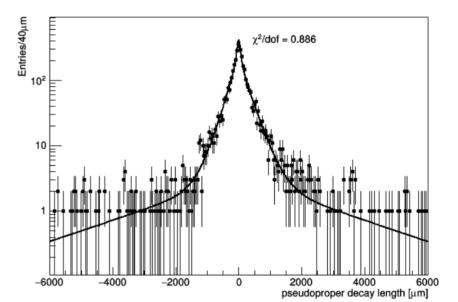


p0=G1norm, p1=G1Mean, p2=G1rms, p3=G2norm, p4=G2Mean, p5=G2rms, psproper_decay_length p6=f alpha, p7=f Lambda, p8=f norm Entries/10_µm Lxv Entries 346281 89264 Entries(10µm) Entries 10⁴ Mean -0.3074 -8.3e-05 Mean BMS 86.03 FF RMS 0.01466 χ^2 / ndf 496.4 / 1190 χ^2 / ndf 421.3/322 2.0 - 3.0 GeV/c (Type = FF) Prob Prob 0.0001617 10^{3} WG1FF 14.27 ± 0.18 p0 46.85 ± 15.90 MeanG1FF 1.793e-10 ± 3.355e-02 p1 -12.02 ± 5.81 pT: 2.0-3.0 GeV/c ResG1FF 59.18 ± 0.59 p2 47.71± 1.83 p3 WG2FF 2.277 ± 0.322 12.95 ± 4.55 10^{2} p4 MeanG2FF 1.066 ± 0.502 39.93 ± 7.44 10^{2} p5 ResG2FF 39.34 ± 2.82 32.27 ± 1.27 p6 141.6 ± 1.2 AlphaResFF 172.7 ± 1.4 p7 3.112 ± 0.022 LambdaResFF 3.722 ± 0.028 10 p8 35.59 ± 6.78 10 NormPowerLawFF 2.359 ± 0.048 . p10 8.897e+05 ± 2.989e+03 Normalization 3.463e+06 ± 5.889e+03 10-1 10-1 10-2 -6000 -4000 -2000 0 2000 4000 6000 -4000 -2000 2000 4000 6000 0 PsProperDecayLength(x)(µm) pseudoproper decay length [µm]

Fiorella pp-5-13TeV




Fiorella pp-5-13TeV



- To obtain a good description of the data outside the signal region.
- We fit the x-distribution on both side of signalmass region (LB, RB).
- Components:
 - Exp(+ve slope) λ_{+} : describes the bkg from other long-lived b-hadrons producing ep-em pairs.

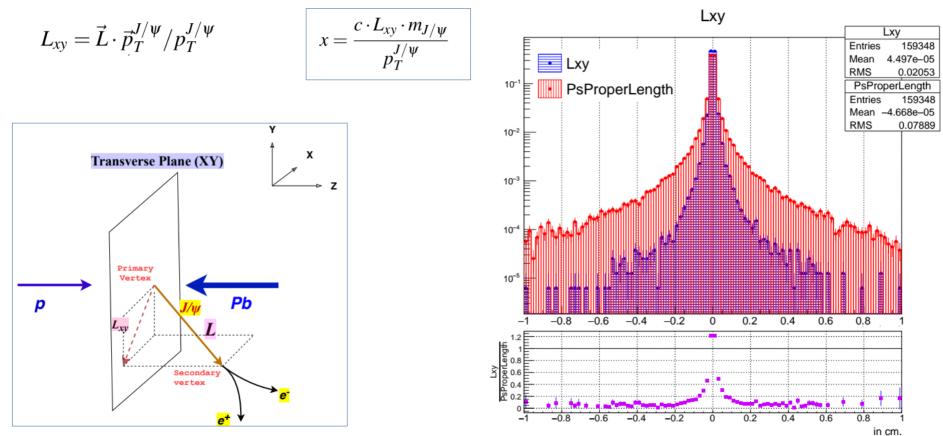
 $b \longrightarrow c e-X \quad c \longrightarrow e+X$

- Exp (-ve slope) $\lambda_{\rm and}$ symmetric part: describes the remaining bkg from other sources.
- Zero-life time components : same as resolution function.
- f's are constants to normalize the distribution.

Example figure taken from AnaNote-957

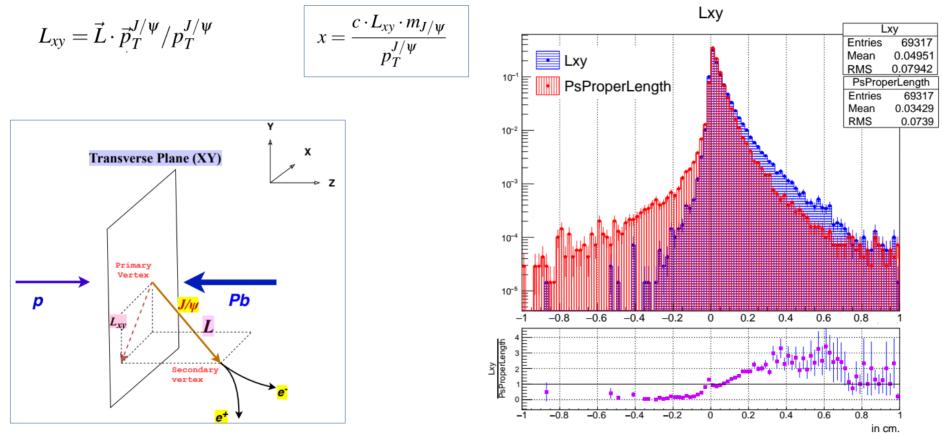
$$F_{Bkg[m_{inv,p_T,type}]}(x) = \left[\frac{f_+}{\lambda_+}e^{-\frac{x'}{\lambda_+}} \cdot \boldsymbol{\theta}(x') + \frac{f_-}{\lambda_-}e^{\frac{x'}{\lambda_-}} \cdot \boldsymbol{\theta}(-x') + \frac{f_{Sym}}{2\lambda_{Sym}}e^{-\frac{|x'|}{\lambda_{Sym}}} + \left(1 - f_+ - f_- - f_{Sym}\right) \cdot \boldsymbol{\delta}(x')\right] \otimes R_{p_T,type}(x - x')$$

Backup


$$M_{Bkg}(m_{e^+e^-};\lambda,A) = A \cdot e^{-\frac{(m^{e^+e^-})}{\lambda}} + B ,$$

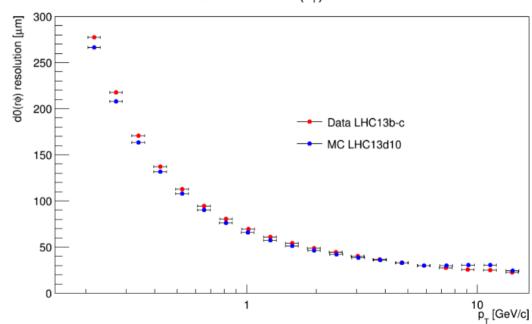
A & Lambda are free parameters

L_{xy} to PsProper Decay Length (x)



Comparision of Lxy and x-distributions for Reconstructed true Prompt J/psi

L_{xy} to PsProper Decay Length (x)



Comparision of Lxy and x-distributions for Reconstructed true NonPrompt J/psi

Data vs MC $d0(r\phi)$ resolution

