

HF jets analysis

13.04.2020 ALICE@IFJ meeting

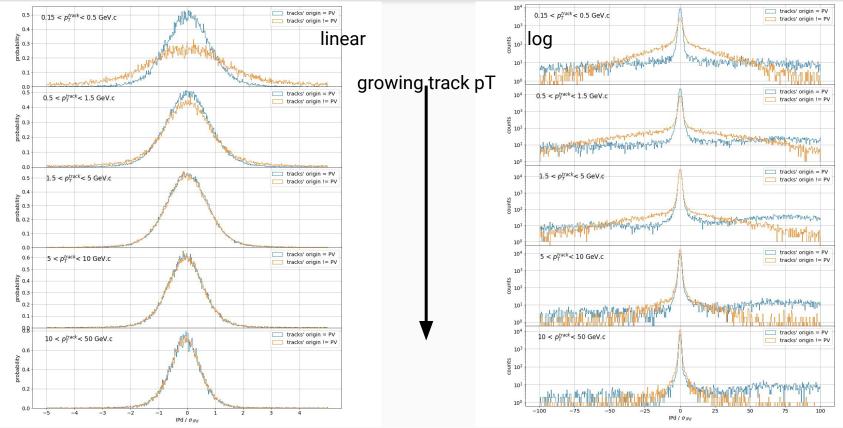
Sebastian Bysiak

Sebastian Bysiak (IFJ PAN)

HFJ analysis

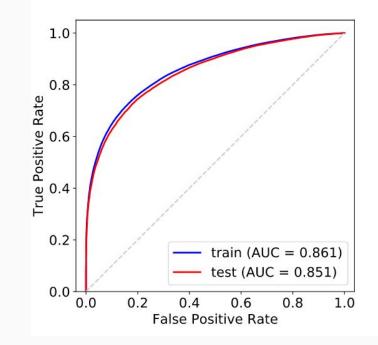
Outline

- 1. Progress in HF-jets analysis
- 2. Questions & issues
- 3. Plans for next week


QA data re-merging

- LHC18r remerging of 59 out of 100 runs completed (accessible on EOS)
- LHC18q pass3 ongoing on ALICE level, 119 out of 144 started

IPd Nsigma distribution



Sebastian Bysiak (IFJ PAN)

HFJ analysis

metrics

- for *bc-vs-udsg* we focus on far left part of the plot (False Positive Rate ~ 10^-3 10^-1)
- ROC AUC is most closely correlated with signal eff. for bckg mistag rate = 1e-1

bc-vs-udsg model trained on SV features

"cuts1" = Chi2<10 ; "cuts2" = Chi2<10 and Dispersion < 0.03 and SigmaLxy							and SigmaLxy<0.		
		N_SV = 3				N_SV = 10			
sorting feature	ROC	signal eff. for bckg mistag rate:			ROC	signal	nal eff. for bckg mistag rate:		
+ cuts	AUC	1e-3	1e-2	1e-1	AUC	1e-3	1e-2	1e-1	
Chi2	0.7849	23.3	34.5	53.1	0.8092	25.4	37.5	57.7	
Dispersion	0.7953	25.2	36.3	54.6	0.8143	25.6	38.5	58.7	
Lxy	0.8267	19.9	35.4	60.3	0.8336	23.8	38.8	62.0	
LxyNsigma	0.8285	19.0	35.3	61.1	0.8331	23.9	37.8	61.7	
LxyNsigma+cuts1	0.8218	22.3	36.1	60.2	0.8262	24.2	37.0	60.4	
LxyNsigma+cuts2	0.8200	21.4	36.1	59.6	0.8256	23.3	37.5	60.3	

- for N_SV = 3:
 - sorting by Chi2/Dispersion yields highest efficiency for low bckg threshold choice (1e-3)
 sorting by Lxy/LxyNsigma gives highest efficiency for less strict threshold (1e-1)
- the differences are reduced when we increase N_SV from 3 to 10
- adding quality cuts while sorting by LxyNsigma brings the results closer to sorting by Chi2/Dispersion and is more beneficial for lower lower N_SV as for larger it decreases efficiency

bc-vs-udsg model trained on tracks features

		N_tracks = 3				N_tracks = 10			
sorting + cuts	ROC	signal eff	. for bckg mistag rate:		ROC	signal eff. for bckg mistag rate:			
	AUC	1e-3	1e-2	1e-1	AUC	1e-3	1e-2	1e-1	
IPd/cov	0.7950	13.8	30.3	55.2	0.8335	20.1	38.4	62.1	
IPdNsigma	0.7935	15.1	29.6	54.6	0.8311	22.7	40.0	62.3	
IPdNsigmaAbs	0.8294	15.9	34.4	60.4	0.8429	22.9	41.0	64.2	
Pt	0.8147	20.1	36.2	60.0	0.8413	23.7	41.6	64.4	

- previous mistake: sorting by IPd/covIPd instead of IPd/sigma(IPd) gives a little bit worse results than correct one
- but it's always a better idea to sort by its absolute value
- sorting by pT gives similarly good results, especially for lower N_tracks worth trying in PbPb when contamination from soft particles with large DCA will be much greater

sorting	N_tracks = 3	N_tracks = 10		
+ cuts	ROC AUC	ROC AUC		
Chi2	0.8096	0.8273		
Dispersion	0.8164	0.8318		
Lxy	0.8211	0.8351		
LxyNsigma	0.8310	0.8393		
LxyNsigma+cuts1	0.8247	0.8328		
LxyNsigma+cuts2	0.8252	0.8330		

sorting	N_tracks = 3	N_tracks = 10	
+ cuts	ROC AUC	ROC AUC	
IPd/cov	0.8056	0.8441	
IPdNsigma	0.8013	0.8402	
IPdNsigmaAbs	0.8172	0.8416	
Pt	0.8082	0.8416	

- 0.01 higher ROC AUC ~ 2.5% higher eff. of *b*-jets for *c*-jets mistag. rate = 10%
- for SV: sorting by LxyNsigma gives best results
- for tracks: sorting by IPdNsigmaAbs gives highest results
- the differences are reduced when we increase number of objects included

Plans for next week (discussion)

- check IPd Nsigma distribution:
 - plot for data
 - plot IPd & sigma instead of ratios
 - o check distributions e.g. phi-eta for tails, take into account asymmetry
- invent new cuts: hint = where the data diverges from MC
- investigate experiments in detail:
 - o control plots created for all these experiments, stability, artifacts
 - $\circ \quad \ \ \, \text{features used by models} \\$
- compare data-MC discrepancy on column level w/ & w/o cuts
- create best possible model with:
 - covIPd and unshuffled-pt fixed
 - added jet shapes/substructure observables e.g. mean/median pT, momentum dispersion, angularity etc
 - check possibility to include SV representative to their distribution, like highest, average and lowest LxyNsigma instead of list of 3 or 10
- apply on data and show critical distributions: Lxy & IP (after loose cuts on SV quality)