
Fast and Efficient Entropy Compression of
ALICE Data using ANS Coding

Michael Lettrich for the ALICE collaboration, michael.lettrich@cern.ch

CERN, SCCS Technische Universität München

• Provide state of the art lossles entropy compression in the ALICE O2 framework
that minimizes permanent storage requirements of detector data in LHC run 3.
• Preprocessed detector data are provided as Compressed Time Frames as flat,
numeral arrays to be written out as a binary stream to permanent storage at a tar-
get data rate of ~90GB/s [1]
• Coder must efficienlty deal with source alphabets of up to 25 bits per symbol.
• If possible, exploit CPU and GPU resources of heterogenious ALICE O2 farm.
• Maintain compatibility between data created by CPU and GPU.

O
bjective

• Variable range coders use symbol distribution of source data for compression.
• Examples for Variable range coders are Huffmann Coding or Arithmetic Coding.

• ANS by Jarek Duda [2] adds new family of variable range coders.
• rANS as fast entropy coder for large alphabets based on arithmetic operations.
• Encodes symbols into single, infinite precision integer state in LiFo order.
• Decoder unwinds LiFo stack, reversing coder steps.

• State interpretable as a cyclic, asymetrized base-m numeral system.

• State grows with probability of encoded symbol xn+1 ≈ xn/Pr[s].
• overcomes 1Bit/symbol limitation of Huffman, on pair with Arithmetic Coding.
• Constrain x to a finite Interval I by streaming in/out bits.

Performance Considerations
• Rescaling m≔2p allows mult, div be replaced by shifts and mod by bitops.
• Replace divisions by multiplication with precalculated inverse.
• rANS en-/decoding faster then Arithmetic Coding, slower then Huffman Coding.
rANS and Parallelism
• Coder and Decoder are exact inverse functions: D(C(s,x))=(s,x).
• Allows to write incompressible bits or parallel coders on same stream, see [4].
• Still requires operations by C(s,x) to remain exactly reversible by D(s).

Asym
etric N

um
eral System

s Coders

ALICE Time Projection Chamber (TPC) Data
• Alice TPC responsible for >90% of data in ALICE timeframe for LHC run 3 [1].

Sample Source Data
• Flat structure of arrays, interpretable as four tables with multiple columns.
• Source symbol value range of 8-25 Bits unsigned integers per column.
• 130 simulated Pb-Pb collisions provide O(107) symbols for good statics.
• Non standard, patchy distribution of source symbols.

• Cross checks with detector data from LHC run 2 show high similarity.
• Assume static distribution of source symbols within each column.
• Calculation of entropy (H) as lower bound for compression.
• Concatenation of symbols in correlated columns to reduce overall entropy.
Table Rows Cols Bits/row H [Bits/row] H concat [Bits/row]
AttachedClusters 21 072 849 4 41 17.15 15.75
AttachedClustersReduced 20 590 430 4 55 17.60 17.59
Tracks 482 419 5 73 53.90 53.90
UnattachedClusters 50 745 911 5 81 39.77 38.37
Entropy Coding Testsbed

• C++ rANS code based on reengineered ryg_rans [3] coder/decoder.
• Bandwidth: Single thread, (Bits/row×Rows)/time, avg. over 5 runs.
Attainable Level of Entropy Compression
Table Bits/row H [Bits/row] rANS [Bits/row] rANS/H BW [MiB/s]
AttachedClusters 41 15.75 15.75 1.00 649.72
AttachedClustersReduced 55 17.59 17.64 1.00 776.06
Tracks 73 53.90 53.90 1.00 365.56
UnattachedClusters 81 38.37 38.37 1.00 589.80
• rANS coder is close to entropy for all tables at high encoding speeds.
Compression and LUT Precision

Bandwidth Measurements

 Case Study : Com
pressing ALICE TPC Data

• rANS is a powerful entropy coding algorithm for large alphabets.
• Capable of handling close to optimal compression of all tested ALICE datasets.
• Fast encoding performance, currently lacks in decoding with large alphabets.
Outlook
• Improve code robustness and decoding speeds by optimizing LUT.
• Finish Implementation of SIMD and GPU features.
• Integration into ALICE O2.
Acknowledgments
Special thanks to Jarek Duda and Michael Bader for advise, feedback and fruitful
discussions.

Conclusion

[1] Technical Design Report for the Upgrade of the Online-Offline Computing System, CERN-LHCC-2015-006, 04/2015
[2] Jarek Duda, Asymmetric numeral systems: entropy coding combining speed of Huffman coding with compression rate of arithmetic coding, arXiv:1311.2540, 11/2013

[3] Fabian Giesen, https://github.com/rygorous/ryg_rans, last checked 10/2019
[4] Fabian Giesen, Interleaved entropy coders, arXiv:1402.3392, 02/2014References:

BAACAB
Equal encoding for all symbols

0

2

4

A B C

Symbol Distribution Count

B A A C A B

AB A C A B

Shorter codes for frequent symbols

Message: BAACAB, length

Symbol LUT A B C
Count 𝑙𝑙� 3 2 1
Cumulative 𝑏𝑏� 0 3 50

2

4

A B C

Symbol Distribution Count

𝑏𝑏� ��𝑙𝑙�
���

���,𝒙𝒙� ���,�� ���,�� ��𝟔𝟔,�� ����,�� ����,�� �����,��
𝒙𝒙 3 6 12 77 152 459
𝒙𝒙𝟔𝟔 3� 10� 20� 205� 412� 2043�

Direction of Decoder

rANS Coder 𝐶𝐶 𝑠𝑠, 𝑥𝑥 � 𝑚𝑚�𝑥𝑥 𝑙𝑙� ⌋ � 𝑏𝑏� � mod 𝑥𝑥, 𝑙𝑙�
rANS Decoder D 𝑥𝑥 � �𝑠𝑠, 𝑙𝑙��𝑥𝑥 𝑚𝑚 ⌋ � 𝑏𝑏� � mod 𝑥𝑥,𝑚𝑚 �

𝐷𝐷 𝐶𝐶 𝑠𝑠, 𝑥𝑥 � �𝑠𝑠, 𝑥𝑥�

Direction of Coder

2

0 , B
3 , A 10 , A

ALICE Timeframe
TPC ITS TRD MFT Remaining

���, 𝑥𝑥� ∉ 𝐼𝐼 stream out
highest bits

𝑥𝑥 � ���, 𝑥𝑥�

no

yes

return 𝑥𝑥

stream in
lowest bitsx∉ 𝐼𝐼

�s, 𝑥𝑥� � D�𝑥𝑥�

no yes
return�s, 𝑥𝑥�

Streaming Coder Streaming Decoder

Track 1 - 299

• Coder bandwidth grows with size of
source alphabet.
• Same operations executed on larger
input data (16Bit ~2x faster then 8Bit).
• Profits from sparse distributions.

Histogram with 100 bins from 482 419 symbol samples.
Found 344’987 unique values in 24 Bit symbol range.
Entropy of sample data is 18.24 Bit

Histogram with 100 bins from 21 072 849 symbol samples.
Found 419 unique values in 16 Bit symbol range.
Entropy of sample data is 6.06 Bit

Read Column Build Symbol
LUT Rescale LUT

EncodeDecodeCheck
Correctness

Build Symbol
Distribution

Preparation
Timed Runs
Checks

Only raw (de)coding speed is
measured. LUTs are staticaly
kept in memory for produc-
tion system.

Coded data is decoded af-
terwards and compared to
source data for correctnes.

• Rescaling LUT to 2p for perfromance.
• LUT must map source distribution
well enough for good compression.
• Trivialy: |LUT|>|SourceAlphabet|, i.e
larger LUTs for larger alphabets.
• Must be preserved for decoding.
• Additional Inverse LUT (iLUT) for de-
coder |iLUT|≥|LUT|, constructed from
LUT.

• For large source alphabets only sensible for static distributions, where LUTs
can be reused or for extremely large datasets.
• Requires algorithmic improvements to decrease memory requirements.

• Decoder bandwith decreases with in-
creasing LUT size.
• Performance bound by lookups in
iLUT that does not fit into cache.

