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•	 Provide state of the art lossles entropy compression in the ALICE O2 framework 
that minimizes permanent storage requirements of detector data in LHC run 3.
•	 Preprocessed detector data are provided as Compressed Time Frames as flat, 
numeral arrays to be written out as a binary stream to permanent storage at a tar-
get data rate of ~90GB/s [1]
•	 Coder must efficienlty deal with source alphabets of up to 25 bits per symbol.
•	 If possible, exploit CPU and GPU resources of heterogenious ALICE O2 farm.
•	 Maintain compatibility between data created by CPU and GPU.

O
bjective

•	 Variable range coders use symbol distribution of source data for compression. 
•	 Examples for Variable range coders are Huffmann Coding or Arithmetic Coding.

•	 ANS by Jarek Duda [2] adds new family of variable range coders.
•	 rANS as fast entropy coder for large alphabets based on arithmetic operations.
•	 Encodes symbols into single, infinite precision integer state in LiFo order.
•	 Decoder unwinds LiFo stack, reversing coder steps.

•	 State interpretable as a cyclic, asymetrized base-m numeral system.

•	 State grows with probability of encoded symbol xn+1 ≈ xn/Pr[s].
•	 overcomes 1Bit/symbol limitation of Huffman, on pair with Arithmetic Coding.
•	 Constrain x to a finite Interval I by streaming in/out bits.

Performance Considerations
•	 Rescaling m≔2p allows mult, div be replaced by shifts and mod by bitops.  
•	 Replace divisions by multiplication with precalculated inverse.
•	 rANS en-/decoding faster then Arithmetic Coding, slower then Huffman Coding. 
rANS and Parallelism
•	 Coder and Decoder are exact inverse functions: D(C(s,x))=(s,x).
•	 Allows to write incompressible bits or parallel coders on same stream, see [4].
•	 Still requires operations by C(s,x) to remain exactly reversible by D(s).
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ALICE Time Projection Chamber (TPC) Data
•	 Alice TPC responsible for >90% of data in ALICE timeframe for LHC run 3 [1].

Sample Source Data
•	 Flat structure of arrays, interpretable as four tables with multiple columns.
•	 Source symbol value range of 8-25 Bits unsigned integers per column.
•	 130 simulated Pb-Pb collisions provide O(107) symbols for good statics. 
•	 Non standard, patchy distribution of source symbols.

•	 Cross checks with detector data from LHC run 2 show high similarity.
•	 Assume static distribution of source symbols within each column.
•	 Calculation of entropy (H) as lower bound for compression.
•	 Concatenation of symbols in correlated columns to reduce overall entropy.
Table Rows Cols Bits/row H [Bits/row] H concat [Bits/row]
AttachedClusters 21 072 849 4 41 17.15 15.75
AttachedClustersReduced 20 590 430 4 55 17.60 17.59
Tracks 482 419 5 73 53.90 53.90
UnattachedClusters 50 745 911 5 81 39.77 38.37
Entropy Coding Testsbed

•	 C++ rANS code based on reengineered ryg_rans [3] coder/decoder. 
•	 Bandwidth: Single thread, (Bits/row×Rows)/time, avg. over 5 runs. 
Attainable Level of Entropy Compression
Table Bits/row H [Bits/row] rANS [Bits/row] rANS/H BW [MiB/s]
AttachedClusters 41 15.75 15.75 1.00 649.72
AttachedClustersReduced 55 17.59 17.64 1.00 776.06
Tracks 73 53.90 53.90 1.00  365.56
UnattachedClusters 81 38.37 38.37 1.00 589.80
•	 rANS coder is close to entropy for all tables at high encoding speeds.
Compression and LUT Precision

Bandwidth Measurements 

 Case Study : Com
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•	 rANS is a powerful entropy coding algorithm for large alphabets.
•	 Capable of handling close to optimal compression of all tested ALICE datasets.
•	 Fast encoding performance, currently lacks in decoding with large alphabets.
Outlook
•	 Improve code robustness and decoding speeds by optimizing LUT.
•	 Finish Implementation of SIMD and GPU features.
•	 Integration into ALICE O2.
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•	 Coder bandwidth grows with size of 
source alphabet.
•	 Same operations executed on larger 
input data ( 16Bit ~2x faster then 8Bit). 
•	 Profits from sparse distributions.

Histogram with 100 bins from 482 419 symbol samples.
Found 344’987 unique values in 24 Bit symbol range.
Entropy of sample data is 18.24 Bit

Histogram with 100 bins from 21 072 849 symbol samples.
Found 419 unique values in 16 Bit symbol range.
Entropy of sample data is 6.06 Bit
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Only raw (de)coding speed is 
measured. LUTs are staticaly 
kept  in memory for produc-
tion system. 

Coded data is decoded af-
terwards and compared to 
source data for correctnes.

•	 Rescaling LUT to 2p for perfromance.
•	 LUT must map source distribution 
well enough for good compression.
•	 Trivialy: |LUT|>|SourceAlphabet|, i.e 
larger LUTs for larger alphabets.
•	 Must be preserved for decoding. 
•	 Additional Inverse LUT (iLUT) for de-
coder |iLUT|≥|LUT|, constructed from 
LUT.

•	 For large source alphabets only sensible for static distributions, where LUTs 
can be reused or for extremely large datasets.
•	 Requires algorithmic improvements to decrease memory requirements.

•	 Decoder bandwith decreases with in-
creasing LUT size.
•	 Performance bound by lookups in 
iLUT that does not fit into cache.


