

 AGH University of Science and Technology

 Faculty of Physics and Applied Computer Science

Master's thesis

Patryk Lesiak
major: applied computer science

Development of the data quality assurance and
visualization system for the Time Projection

Chamber in ALICE experiment at the LHC

 Supervisor: dr Jacek Otwinowski
The Henryk Niewodniczański Institute of Nuclear Physics,
Polish Academy of Sciences, Cracow

Cracow, October 2016

Aware of criminal liability for making untrue statements I declare that the following thesis

was written personally by myself and that I did not use any sources but the ones mentioned

in the dissertation itself.

...

 (legible signature)

2

The subject of the master’s thesis and the internship by Patryk Lesiak

student of 5th year major in applied computer science

The subject of the master’s thesis: Development of the data quality assurance and visualization

system for the Time Projection Chamber in ALICE experiment at the LHC

 Supervisor: dr Jacek Otwinowski
 Reviewer: dr inż. Grzegorz Gach
A place of the internship: The Henryk Niewodniczański Institute of Nuclear Physics,

 Polish Academy of Sciences, Cracow

Program of the master’s thesis and the internship

1. Discussion with the supervisor on realization of the thesis.

2. Collecting and studying of the references connected with the thesis topic.

3. The internship:

 Preparation of the environment for the software.

 Incremented implementation of the developed system.

 Collecting metrics of the developed system.

4. Drawing conclusions based on gathered data.

5. Analysis of the project, discussion and approval by the supervisor.

6. Editorial work on the thesis.

Dean’s office delivery date: October 2016

 ………………………………….. …………………………………..
 (Department Chair’s signature) (Supervisor’s signature)

3

Supervisor's review

4

Reviewer's review

5

Abstract

The following thesis describes architecture of a prototype of the data quality assurance and

visualization system for the Time Projection Chamber in ALICE experiment at the LHC. System

was created as a module of the new O2 system. Developed prototype was used to perform tests of

computing resources consumption and merging operation efficiency for tests with different

parameters such as communication socket buffer capacity, size and type of Quality Control objects

and number of producing and merging programs in a topology.

Performed tests shown, that buffer for connection between producing and merging programs has to

have capacity of at least the same number of objects as producing programs in topology. The size of

messages had no influence on online processing with smaller producing efficiency for larger

messages. Data type tests shown, that class TH1F, TH2F and TH3F provide stabilization of

consumed resources in contrast to classes THnF and TTree. Scalability tests proved that merger

online processing is possible for up to 375 producing nodes for one merger. By increasing the

number of merging nodes it is possible to improve processing capabilities for inefficient topology of

one merger and 500 producers by dividing data stream for many merging nodes.

Streszczenie

Praca magisterska opisuje architekturę prototypu systemu do kontroli jakości i wizualizacji

danych Komory Projekcji Czasowej eksperymentu ALICE na LHC. Oprogramowanie zostało

stworzone w ramach aktualizacji systemu O2. Rozwinięty prototyp posłużył do analizy

wykorzystywanych zasobów obliczeniowych oraz wydajności procesu scalania danych dla testów o

różnych parametrach takich jak rozmiar bufora kanału komunikacyjnego, rozmiar i typ obiektów

przechowujących dane oraz ilość programów produkujących i scalających dane.

Przeprowadzone testy wykazały, że bufor dla połączenia pomiędzy programami produkującymi a

węzłem scalającym musi być co najmniej równy ilości programów produkujących dane. Rozmiar

wiadomości nie wpływał na obniżenie wydajności procesu scalania przy różnej sprawności

programów produkujących dane. Testy typów obiektów pokazały, że klasy TH1F, TH2F i TH3F

zapewniają stabilizację używanych zasobów obliczeniowych w przeciwieństwie do klas THnF oraz

TTree. Skalowanie ilości programów produkujących dane odbywało się na korzyść wydajności

procesu scalania aż do 375 programów produkujących dane. Testy ilości programów scalających

dane wykazały, że nieefektywną topologię taką jak 500 programów produkujących oraz jeden

program scalający można poprawić przez podzielenie strumienia danych na więcej programów

scalających.

6

Contents

1 Introduction...8
1.1 ALICE experiment...8
1.2 ALICE O2 system...9
1.3 ALICE Quality Control System...9
1.4 The scope of the thesis...10

2 Used tools..11
2.1 Programming language..11
2.2 FairRoot framework...11

2.2.1 ROOT..11
2.2.2 FairMQ..12

2.3 Dynamic Deployment System...12
2.4 Elasticsearch..13

3 Description of developed system...15
3.1 System architecture..15

3.1.1 ProducerDevice...16
3.1.2 MergerDevice...16
3.1.3 ViewerDevice..17
3.1.4 MetricsExtractor...17

3.2 Data flow..18
3.2.1 QC Objects..19
3.2.2 Control messages..19

3.3 Software tests...20
3.3.1 Unit tests...20
3.3.2 Valgrind...21

3.4 Execution environment..22
4 Benchmark...23

4.1 Parameters..23
4.2 Metrics...24

4.2.1 Central Processing Unit (CPU) usage...24
4.2.2 Random Access Memory usage..25
4.2.3 Average merging time...26
4.2.4 Merged objects per second..26

5 Results...27
5.1 Buffer size tests..28
5.2 Data size...32

5.2.1 Various producers number with 50MB objects...36
5.3 Data type..40
5.4 Number of producers...44
5.5 Number of mergers..48

6 Summary..52
7 References...55
8 Remarks...56

7

1 Introduction

1.1 ALICE experiment

 ALICE (A Large Ion Collider Experiment) [1] is one of the detectors located at the Large

Hadron Collider (LHC) which belongs to European Organization for Nuclear Research (CERN).

It is focused on exploring properties of strongly interacting matter at extremely high temperature

and density where the formation of a new phase of matter, the quark-gluon plasma, is expected.

The central part of the ALICE detector consists of a few devices necessary for particles tracking and

identification. One of them is the Time-Projection Chamber (TPC) [2] which is the main tracking

detector of the whole system. It was constructed to provide measurements of charged particle

momentum, vertex determination and identification of particles.

Operation of the TPC is based on the phenomenon of gas ionization. The chamber is filled with 90

m3 gas mixture of neon, carbon dioxide and nitrogen in 90/10/5 proportions. Electrons from gas

ionization made during collisions are carried in end plates direction where signal amplification

process takes place. After this process obtained analog signals can be digitize by front-end

electronics of TPC end send to online and offline systems for further processing.

Engineers and scientists from the ALICE Collaboration are constantly trying to enhance capabilities

of experiment. During the second long shutdown of LHC between 2018 and 2019 the ALICE

detector upgrade [3] is planned in order to allow future physics program to be fulfill.

During Run3 (the period of data collecting) between 2019 and 2023 physicists will focus on

studying of heavy-flavour production, low-mass dileptons and production of quarkonia.

To achieve goals mentioned above the ALICE detector upgrade is needed in the following areas:

tracking capability, enhancing low-momentum vertexing and enabling data collection with larger

rate (up to 50 thousands events per second). One of the consequences will be increased amount of

data that will require online and offline processing.

8

1.2 ALICE O2 system

 According to the Technical Design Report [4] future system should be able to handle

processing of continuously incoming data from the TPC with rate reaching 1.1TB/s at 50 kHz

interaction rate of Pb-Pb collisions. Current approach does not assume continuous read-out mode of

detectors. Thus, different approach is needed to face the new challenges with increased rate of data

flow. The ALICE Online-Offline computing system (O2) [4] will be used in future for processing

data collected from the detectors of the experiment.

The concept of upgrading current system consists of moving all data coming from the detector into

the computing system. In order to save reconstructed events into a local storage four steps of data

processing is needed.

Firstly input of the system organized as constant raw data streams will be transformed into

manageable object using global reference clock enclosed to the stream. After calibration and local

pattern recognition data will be stored in compressed objects. The second step consists of data

aggregation and global reconstruction from all channels of detector measurements. After those steps

data will be transported to efficient storage center. Up to this point every activity is performed

synchronously with collecting of the data. The final step of processing is asynchronous to the data

taking. It consists of further calibration, reconstruction and event extraction. Those events will be

available on the ALICE Computer Grid for analysis as a final product of the O2 system.

1.3 ALICE Quality Control System

The purpose of the Quality Control (QC) system is to provide online, fast feedback about

quality of collected data as well as performance of the data calibration and reconstruction

algorithms.

A work flow of the QC system begins with receiving data from different steps of data flow

described in section 1.2. The next step is to perform quality assessment and storage of QC

information. The results should be computed automatically and consist of objects like histograms or

values together with meta data describing data quality assessments. Another component of the QC

system, Event Display, will allow to manipulate, visualize and analyze reconstructed events.

The key components of QC system are shown in figure 1.

9

Figure 1: Relationship between the Control, Configuration and Monitoring (CCM) components of

the O2 system, taken from [4].

1.4 The scope of the thesis

The aim of the thesis was to develop a prototype of QC system which consists of the QC

data extraction, merging performance examination and results visualization. Implemented system is

included in the ALICE O2 software and will be used in the further system development.

The prototype allows to carry out research on the consumption of resources and performance of the

system for various configuration parameters. Those parameters are amount of incoming data, the

size and type of data, the size of nodes messaging buffers and number of processing nodes in

deployed system.

After results evaluation the most suitable configuration can be chosen for further development of

O2 computing system.

The following aspects were covered in this thesis:

• Implementation of the merging prototype

• Implementation of the control component

• Execution of the benchmark tests

• Results evaluation

10

2 Used tools

2.1 Programming language

C++ programming language was chosen because of its fast execution time and compatibility

with frameworks that have been developed by the ALICE Collaboration and GSI/IT group.

To follow the modern C++ programming approach some features of the 11 and 14 versions were

applied like chrono library, smart pointers or lambda functions.

Some of the modules of popular set of libraries Boost [5] were utilized. The following libraries

were used: Boost.PropertyTree, Boost.Date_Time, Boost.Algorithm, Boost.Program_options and

Boost.Test.

2.2 FairRoot framework

FairRoot framework [6] is required for installation of Alice O2 software because some

modules depends on FairRoot implementation of reconstruction, simulation and analysis. The

framework provides two necessary modules for developing merging prototype named ROOT [7]

and FairMQ.

2.2.1 ROOT

FairRoot is based on the ROOT framework [7] which provides functionality to handle big

data processing, visualization, storage and statistical analysis. Already implemented data structures

can be utilized for representing and processing of the data in O2 system. TH1 class and its subclasses

like TH2, TH3 and THn are specialized to store data in histogram form. There are also classes

implemented for data aggregation such as TTree which can hold all kinds of data, such as objects or

arrays in addition to the simple types. In order to send objects over transport layer there is a need to

serialize them into byte array and deserialize at the receiver side. ROOT framework provides such

functionality with TMessage class.

Every class within described framework extends base class with name TObject. Thus, every class

can be visualized using Draw function which declaration is in root class. Such functionality helped

to create simple EventDisplay component described in section 1.3.

11

2.2.2 FairMQ

 Its purpose is to provide possibility of running tasks in different system processes and

arrange communication between them. Each independent process can be implemented as a state

machine called device. Those devices can be connected to each other with one of framework

transport layer implementations which is based on efficient messaging library ZeroMQ [8]. This

type of communication provides asynchronous messages queues. Together with communication

patterns like push-pull, request-response or publish-subscribe it gives possibility to form processing

tasks in topologies specific to concrete problem.

2.3 Dynamic Deployment System

More than 10000 programs are needed to run the target environment of the O2 system. For

such purpose Dynamic Deployment System (DDS) [9] was implemented. The system facilities

deployment of systems consisting of many independent programs by providing a concepts of

topology file. Inside this configuration file is located description of the implemented system in the

form of XML. Each of the executable described in the topology deployed by DDS agents is started

by DDS commander server, a central part of the system.

Common global variables can be introduced inside the file in order to share access to defined value

between all of the programs within the same topology. A target environment can be a local system

or grid solution with batch systems as PBS or SLURM.

Example of DDS topology file with system composed of two different programs:

<topology id="QA">
 <decltask id="ProducerTaskId">
 <exe reachable="false">runProducer parameter1 parameter2</exe>
 </decltask>

 <decltask id="MergerTaskId">
 <exe reachable="false">runMergerDevice</exe>
 </decltask>

 <main id="main">
 <task>ProducerTaskId</task>
 <task>MergerTaskId</task>
 </main>
</topology>

12

Another important feature is DDS intercom API footsore as C++ library. Its purpose is to provide

messages exchange between the separate processes running in one topology. Each program can

broadcast a message in the character string form. Program which is designed to receive such

messages implements subscription as a message handler:

CCustomCmd ddsCustomCmd;

ddsCustomCmd.subscribe([&](const string& command, const string& condition,
uint64_t senderId)
{

// message handling
});

ddsCustomCmd.subscribeOnError([&](const EErrorCode _errorCode,
const string& _errorMsg)

 {
 // error message handling
 });

DDS intercom API is considered by the ALICE collaborators as a good approach for implementing

separate communication channel for exchanging control messages within the QC system.

2.4 Elasticsearch

The QC system produces a large amount of control metrics. There is a need to aggregate

measurements and visualize them in a human convenient form.

Nowadays there are many search and analytic engines available on the market. Elasticsearch [10] is

one of the solutions which provides a scalable, distributed and real-time processing. It is based on

full-text search engine library Apache Lucene.

Elasticsearch provides possibility to store text documents with Javascript Object Notation (json)

format. Every field of the json can be indexed by the engine to allow efficient search of selected

data. In order to create an index which will be used to distinguish collection of documents it is

needed to use RESTful API provided by Elasticsearch server.

13

An example of creating new index for set of metrics can be found below:

curl -XPUT http://localhost:9200/newMetric -d '
{
 "mappings" : {
 "_default_" : {
 "properties" : {
 "command" : {"type": "string", "index" : "not_analyzed" },
 "node_id" : {"type": "string", "index" : "not_analyzed" },
 "average_merge_time" : { "type" : "double" },
 "VmRSS" : { "type" : "integer" },
 "request_timestamp" : { "type": "date" },
 "response_timestamp" : { "type": "date" },
 "cpu_clock" : { "type" : "integer" },
 "merged_objects_per_second" : {"type" : "double"}
 }
 }
 }}';

Once data is imported it is possible to visualize results as graphs by using Kibana platform which

was designed to work with Elasticsearch. Another modules allows to calculate and visualize

standard deviation of examined set of data.

14

3 Description of developed system

3.1 System architecture

Prototype of the QC system consists of four types of executable programs. Each of them

represents the different stages of processing data. Running programs perform a single type of task

like producing, merging, visualizing or monitoring. Thereby there is a need to provide

communication to combine them into one coherent system.

For asynchronous communication purposes FairMQ framework described in section 2.2.2 was used.

SendAsync and ReceiveAsync functions of FairMQChannel class provides possibility to exchange

messages between the separated programs with push-pull approach. Developer can decide what to

do in the case when buffer is overloaded. In developed prototype in such case send or receive

operations are repeated until success. This approach prevents loss of the data.

QC objects which are exchanged between nodes of the system are serialized and saved in objects of

TMessage class. In order to send messages with various types every object is first cast to TObject

class which is a root class of all types implemented in the ROOT framework. With this approach

number supported types may increase in the future.

Sequence diagram of processing data by the prototype can be found in figure 2.

Figure 2: Sequence diagram of processing data by developed QC prototype.

15

3.1.1 ProducerDevice

This component is responsible for producing QC data. Those objects represent sampled data

from all levels of processing data in the ALICE O2 system.

Each object is filled with the random values from the Gaussian distribution. ROOT framework has

been used to exploit already implemented classes for data storage. The size of the objects depends

on amount of data and internal implementation of data storage format.

Producers nodes are supposed to constantly provide QC objects to the system. To allow that, buffers

of these nodes have extremely high capacity to prevent from buffer overload occurrence.

Each producer node creates one part of complete object. To restore complete information there is a

need to merge data from all producers from one cycle of data production.

Every object of ProducerDevice class was implemented rules for handling check-state DDS custom

command in order to provide information about operation status of the node.

Production of the following types of QC objects was implemented:

1) TH1 – one dimensional histogram
2) TH2 – two dimensional histogram
3) TH3 – three dimensional histogram
4) THN – n-dimensional histogram
5) TTree – tree data structure where data can be saved in branches

3.1.2 MergerDevice

Every producer in the DDS topology sends data objects to MergerDevice component where

the process of data reduction by merging is held.

At the beginning of the processing received objects are stored in TList collection. This container

stores pointers to the QC objects. Objects with the same name are stored in one instance of TList

which is an entry in the map container.

As it was described in 3.1.1 section objects from one production cycle should be merged. In order to

simplify implementation of merger component and to avoid problem with handling non complete

information from producers the decision was made to perform merge operation when the same

number of messages as producers is stored by merger, not taking into account from which cycle it

comes. This may cause situation, when objects from different production cycles are merged

together. However, this approach allows the monitoring of the system in which none of producers

stops sending data.

Merging operation itself is implemented in the classes of the ROOT framework. Every class which

allows this operation like TH1F or TTree has a Merge function. The only one argument of the

function is a list of objects which will be merged together with object invoking Merge function.

After merging operation is done collected objects are released from program memory.

16

3.1.3 ViewerDevice

Like previously described components ViewerDevice is implemented as a FairMQ state

machine. Merged portions of data are constantly send to the ViewerDevice which visualize them

using ROOT functionality. Objects with the same name of data are shown in one canvas.

The main benefit of visualizing objects is ensuring human observer that merging process was

successful and that new objects are constantly received by ViewerDevice.

Figure 3: Visualized Quality Control object using the ROOT framework.

3.1.4 MetricsExtractor

The functionality of this program is to gather information about current topology of the

running system and performance of the merging process. DDS intercom API is used to provide

communication channels separated from Quality Control objects transport. That solution prevents

from ending the connection during regular transport layer failure provided by FairMQ.

Every information is transported as characters string with json format.

There are two types of DDS custom command implemented in the prototype:

1) check-state: used to retrieve information about state of every node running in topology

2) get-metrics: used to get metric from MergerDevice component

Each command is described in details in section 3.2.2.

17

3.2 Data flow

Devices are connected to each other with TCP transport layer, creating expected data flow of

the system. There are two types of messages exchanged within running programs: QC objects and

control messages.

Figure 4 shows an example of the QC system topology and its data flow. Connections between

FairMQ devices (ProducerDevice, MergerDevice and ViewerDevice) are made expressing exact

address and port of desired endpoint e.g. tcp://localhost:5005. Such channel can carry serialized

messages within processes. This type of communication ensures the flow of QC messages within

the QC prototype with push-pull approach. This strategy allows to arrange communication as a

pipeline in which messages are carried only in downstream direction. Blue components in figure 4

represents connections and messages flow between FairMQ devices.

Control messages are carried between MetricsExtractor component and FairMQ devices.

Communication is provided by DDS intercom API. Every message consists of serialized char string

formatted as json data. An example of carried metrics can be found in section 3.1.4.

Figure 4: Data flow within developed QC system.

18

3.2.1 QC Objects

These are objects representing the QC data in the O2 system. Serialized to byte array objects

are sent using TMessage class of the ROOT framework.

At the beginning of the transport process messages are placed in the buffer of FairMQ channel.

During AsyncSend operation messages are immediately pushed into further transport layers or are

suspended in case of buffer overload. In such case operation is repeated until success.

Push-pull strategy protects from delays caused by time needed to wait until confirmation message

reaches sending component.

3.2.2 Control messages

Control messages provides information about state of the components of the QC system and

performance of the merging operation. Different types of DDS custom commands are distinct with

command field of json message.

First of the command with name check-state is used to determine if every component of the

topology works correctly. Especially to check if buffers are not overloaded and if every component

has RUNNING state during test performance.

The second command id used to retrieve hardware consumption metric from MergerDevice

component.

The collected data were used for result elaboration in the form of graphs and calculation of mean

value with standard deviation of selected characteristics of hardware resource consumption.

Example of check-state result:

{

"command":"check-state",

"node_id":"CentralMerger",

"node_state":"RUNNING",

"request_timestamp":"2016-08-28T00:17:08",

"response_timestamp":"2016-08-28T00:17:08",

"receive_buffer_size":"1000000",

"receive_buffer_overloaded":"false",

"send_buffer_size":"1000000",

"send_buffer_overloaded":"false"

}

19

Example of get-metrics result:

{

"command":"get-metrics",

"node_id":"CentralMerger",

"PID":"14756",

"request_timestamp":"2016-08-28T00:17:08",

"response_timestamp":"2016-08-28T00:17:08",

"average_merge_time":"0",

"VmRSS":"33032",

"cpu_clock":"28871",

"merged_objects_per_second":"0"

}

In order to gather metadata about metrics the following fields were introduced in metrics presented
above:

• command: the name of requested metric, used by DDS intercom API
• node_id: internal id of FairMQ device
• node_state: state of FairMQ device
• timestamps: time of receiving and sending metric

Timestamps fields facilities moment in time and gives knowledge if there are some delays on DDS

intercom API channels. Further details on metrics can be found in chapter 4.

3.3 Software tests

3.3.1 Unit tests

To monitor software development the unit tests of source code should be implemented. The

unit tests of the QC system prototype were applied using Boost Test Library.

Basic unit tests were implemented to validate FairMQ devices objects creation. The second part of

unit tests consist of validation of system functionality like merging process which is crucial part of

the system functionality. MergerTestSuite collects tests of merging given number of objects.

Test case mergeTenHistograms checks, if objects are correctly merged by mergeObject function.

Histograms are passed by using a collection of already created histogram objects. Assertion

BOOST_TEST checks, if function returned valid merged object when there were enough objects in

merger component to initialize merging operation or if function returned null pointer otherwise.

20

3.3.2 Valgrind

 Programming languages like C++ which do not have garbage collector mechanism are

exposed to memory leaks. In C++ this situation occurs when allocated dynamic memory is not

released before program end. Memory leak can lead to worse performance because of reduced

amount of available RAM and eventually to crash of the system.

Developed prototype was checked by valgrind tool to assure that there are no memory leaks caused

by the QC prototype system.

Despite the fact that there is no memory leak caused by the QC prototype there are two minor

memory leak in ROOT framework used for tests executions. Valgrind output can be found below.

41 bytes in 1 blocks are definitely lost in loss record 2,897 of 7,845

 at 0x402871D: operator new[](unsigned long)

 by 0xD5BF42B: TCling::TypeName(char const*) (TCling.cxx:4368)

 by 0x5205484: TDataMember::Init(bool) (TDataMember.cxx:199)

 by 0x520524A: TDataMember::TDataMember(DataMemberInfo_t*, TClass*) (TDataMember.cxx:182)

 by 0x5230ABB: TListOfDataMembers::Get(DataMemberInfo_t*, bool)

(TListOfDataMembers.cxx:314)

 by 0x523118B: TListOfDataMembers::Load() (TListOfDataMembers.cxx:481)

 by 0x5245580: TClass::GetListOfDataMembers(bool) (TClass.cxx:3552)

 by 0x5243FA4: TClass::GetDataMember(char const*) const (TClass.cxx:3225)

 by 0x523985E: TBuildRealData::Inspect(TClass*, char const*, char const*, void const*,

bool) (TClass.cxx:734)

 by 0xD5B761B: TCling::InspectMembers(TMemberInspector&, void const*, TClass const*, bool)

(TCling.cxx:2275)

 by 0x5240A95: TClass::CallShowMembers(void const*, TMemberInspector&, bool) const

(TClass.cxx:2131)

 by 0x5240005: TClass::BuildRealData(void*, bool) (TClass.cxx:1986)

21

5,400 bytes in 25 blocks are definitely lost in loss record 7,347 of 7,845

 at 0x4028078: operator new(unsigned long)

 by 0x513B8B9: TStorage::ObjectAlloc(unsigned long) (TStorage.cxx:324)

 by 0x508ABD2: TObject::operator new(unsigned long) (TObject.h:158)

 by 0xD5B303A: TCling::LoadPCM(TString, char const**, void (*)()) const (TCling.cxx:1282)

 by 0xD5B4F64: TCling::RegisterModule(char const*, char const**, char const**,

char const*, char const*, void (*)(),

std::vector<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>,

std::allocator<char> >, int>,

std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>,

std::allocator<char> >,

int> > > const&, char const**) (TCling.cxx:1706)

 by 0x5087FEA: TROOT::InitInterpreter() (TROOT.cxx:1785)

 by 0x508199F: ROOT::Internal::GetROOT2() (TROOT.cxx:362)

 by 0x50819CA: ROOT::GetROOT() (TROOT.cxx:376)

 by 0x5242E5A: TClass::GetClass(char const*, bool, bool) (TClass.cxx:2878)

 by 0x524B0E0: TClass::Load(TBuffer&) (TClass.cxx:5339)

 by 0x621B84D: TBufferFile::ReadClass(TClass const*, unsigned int*) (TBufferFile.cxx:2682)

 by 0x662CC2B: TMessage::TMessage(void*, int) (Tmessage.cxx:95)

The memory leaks cause increasing memory consumption of approximately 1 MB per 250 seconds

of test performance. For five minutes tests it does not have an impact on results presented in this

thesis. Nevertheless it will cause allocated memory overload during a long system performance.

The erorrs were raported to ROOT developers and are expected to be gone in the future releases of

new versions.

3.4 Execution environment

PL-Grid infrastructure was used to provide target deployment environment for the merging

prototype. System was executed on the newest cluster "Prometheus". It provides the following

hardware for single computing node:

Processors: 2 x Intel Xeon E5-2680v3

Number of cores: 24

CPU clock: 2,5 GHz

RAM: 128 GB

For such environment there is possibility to deploy up to 48 DDS agetns so as not to cause an

overhead on performance of individual processes.

22

4 Benchmark

To fulfill the goal of this thesis there is a need to test and compare merging prototype

performance with different configurations. Based on the experience from previous periods of data

collecting by ALICE some realistic scenarios was selected to be taken under consideration.

It is expected that benchmark results will help to make decisions about the type and size of the QC

objects, merging algorithms, topology of the system and hardware characteristics of the processing

nodes. Another important aspect is to investigate the scalability of the whole system.

4.1 Parameters

Five parameters were defined to investigate the influence on resource consumption and

performance of the system. Between each execution of the test scenario only one parameter was

changed to enable examination of its impact. The following parameters were taken under

consideration:

1) Data type – the QC values can be stored in different representation types. ROOT framework

provides implementation of the most common representations of data collected by a particle

detector. To examine consequences of choosing specific type of data five types of classes from

ROOT framework were examined in terms of resources consumption and merging performance.

Classes taken under consideration were described in section 3.1.1.

2) Data size – considering one portion of data there is a choice to transport it encapsulated in one

message or to send more messages with divided data. By sending different amount of data in one

message there is possibility to investigate buffer overloading and impact on the time of merging

process. It was decided to examine the following amounts of data for each message from producer

component: 1kB, 500kB, 5M and 50MB.

3) Number of input nodes – every producer node is sending about one hundred messages per

second. By increasing number of input nodes for one processing unit there is possibility to

investigate its performance under bigger pressure of data. To check scalability of the system

research covers 2, 5, 10, 50, 100, 250, 375, 425 and 500 input nodes scenarios.

23

4) Size of the buffers – FairMQ framework introduced buffers for messaging channels. Buffer

capacity is expressed by a number of messages that can be stored. Buffer can be set for

communication socket which performs connect operation of ZeroMQ functionality. After buffer

reaches the limit of messages data transport over channel is suspended. Availability of the buffer

between producers and merger were studied. In developed QC prototype objects stored in the buffer

are of type TMessage. The size of these objects are almost the same as for examined types described

in 3.1.1 section. The following values of buffer capacity were taken into consideration: 1, 4, 20, 50,

100, 1000.

5) Number of merging nodes and their topology – the traffic from all producers of the running

system can be organized in different topology. Depending on the number of merging nodes there is

a possibility to balance the load of each processing unit. This is especially important when some

node of the system is overwhelmed by the input of too many producing components. In order to

reduce the traffic there is a need to deploy additional merging unit into the system. Because DDS

system does not provide yet a possibility to dynamic topology reconfiguration only static

connections were executed during tests.

4.2 Metrics

To have the opportunity to compare the system performance in different test scenarios

described in chapter 4 there is a need to collect control data. Those metrics will focus on the basic

resources which are consumed during the time of system execution. Examination of those metrics

will allow to find hardware and process limitations.

The following metrics were gathered during test execution.

4.2.1 Central Processing Unit (CPU) usage

After doing research the conclusion was made that there is no straightforward way to

measure current CPU usage on Linux operating system in Hz. Most of the monitoring and

snapshotting Linux tools like top or ps use proc pseudo-file system described in section 4.2.2.

However, measurements provided with those tools are based on system time which is different than

processor time, so there is no 1 to 1 mapping between those two values.

The decision was made to use an approximation of CPU clock time provided by C language library

time. The function clock returns approximation of a processor tick count related to the current

process. This is the clock time elapsed since implementation-dependent reference time point.

24

Despite the fact that this number will not reflect the actual CPU usage it is still a good measure of

the CPU usage trend in time.

The maximum value for utilization of one CPU core given by clock function is 106. This will always

be true, regardless of the actual CPU clock speed. Higher values indicates that more than one core

was involved in a program execution.

To measure approximated number of processor ticks which were used for the current process

performance over time there is a need to compare two values obtained during different time of

measurement. An instance of MergerDevice class stores the measurement of CPU time when

receiving the request of metric from ControlDevice object. Doing the next measurement the new

value has to be compared with the previously stored result.

In order to present the result in human friendly way the result was converted to tics per one second

(Hz) using this formula:

Hz=(CPU previous−CPU current)∗
1

T elapsed
 (1)

where:

Hz – approximated CPU usage in Hz

CPUprevious – previous measurement of CPU time

CPUcurrent – current measurement of CPU time

Telapsed – elapsed time between measurements in seconds

4.2.2 Random Access Memory usage

Random Access Memory (RAM) usage was determined by using a Linux pseudo-file system

which provides information about resources consumed by a specific process and the whole system.

The file system is located in root directory of the system in proc folder. Each process has a separate

sub folder with files which represents kernel data structures with always updated values. The most

comprehensive memory measurements are present in status file. Row with virtual memory resident

set size (VmRSS) string represents Resident Set Size which is the current amount of RAM used by

a process.

25

4.2.3 Average merging time

On-line systems are exposed to incorrect operation caused by, among others, delays during

data processing. The prototype developed for this thesis performs the merging operation on input

objects. It is expected that this operation should be done in real time, without a need of queuing

received objects to wait for its turn to be processed.

Therefore it is important to estimate the time needed by the merging process of the QC data. This is

a decisive factor that decides whether specific hardware can handle expected influx of data or

topology of running components needs to be adapted to the data flow.

To measure elapsed time high_resolution_clock class from C++ 11 chrono library was used.

It was decided to examine average merging time of the last 10 merge operations for time of metric

request.

4.2.4 Merged objects per second

This is the number of processed objects between two metric measurements. This process

includes receiving and sending the data from the TCP socket, QC objects deserialization and

serialization. When MetricsExtractor sends request get-metrics to MergerDevice it returns value of

sent objects counter multiplied by time factor. This factor is used to express the value in processed

objects per one second. After that operation the counter value is reset.

Formula for time factor is as follows:

T f=
1 s
T elapsed

(2)

where:

Tf – time factor

Telapsed – elapsed time since last metric request

26

5 Results

The obtained results on the hardware resources consumption and the performance of the

merging operation are reported in this chapter. The metrics are described in detail in the section 4.2.

Each test lasted 300 seconds. Metrics were gathered with 1 second time interval.

Gathered results of hardware consumption resources as CPU and VmRSS usage are biased due to

different initial conditions of the computing nodes and external system processes which were

executed during tests performance. Therefore, the results of CPU and memory consumption should

be considered with precision of 10 percent. This upper limit was established on the basis of

observations of tests executions with the same parameters at different times.

Resource consumption has a direct impact on the system performance. For this reason, the results

on the average merging time and the number of merged objects should be treated with the same

precision of 10 percent.

To avoid such behavior it is necessary to carry out the tests on well isolated grid solution having a

full control of processes running at the same time. Unfortunately it was impossible to create such

conditions on public access grid solutions as PL-Grid infrastructure.

27

5.1 Buffer size tests

The following tests covers the hardware resources consumption and the system performance

with different buffer capacities between producers and one merger. Four producers where producing

1 kB TH1F objects with rate of 100 QC objects per second for each producer.

Figure 5: Approximated merger CPU usage.

Table 1: Average value and standard deviation of approximated merger CPU usage.

Buffer size Average value[Hz] Standard deviation [Hz]

1 46868 27028

4 25351 14200

20 26656 24894

50 25295 27614

100 24596 31119

1000 24643 27735

Figure 5 shows the merger CPU usage over time. After FairMQ devices initialization during the

first second the merger CPU usage for all considered buffer sizes was stabilized. Minor fluctuations

in the CPU usage occurred for buffer of 100 objects starting for times around 220 second. For 2

periods of 7 seconds none of the objects were merged. Because the system was not saturated it

could handle processing of more objects during next cycles of the program execution. Such

behavior may be caused by operating system task scheduling. For buffer size of 1 QC object, CPU

usage was nearly two times higher compering to the other results (table 1). Internal reports of buffer

overload indicates that processor had to do more operations to handle buffer unloading.

28

Figure 6: Merger VmRSS usage.

Table 2: Average value and standard deviation of merger VmRSS usage.

Buffer size Average value [kB] Standard deviation [kB]

1 132221 5235

4 132730 2956

20 132675 3151

50 134403 5063

100 132691 5114

1000 133221 5034

Differences between the average values of the memory consumption for different buffer sizes

shown in figure 6 and table 2 indicates lack of influence of examined capacities on the

MergerDevice memory consumption. Because it could process the whole producers output online

there was no need to use buffer for storage of the QC data. Due to ROOT framework memory leaks

described in section 3.3.2 consumption was stabilized only for periods of about 10 seconds. During

the entire tests execution it had a growing trend of about 3 kB/s.

29

Figure 7: Average merging time.

Table 3: Average value and standard deviation of average merging time.

Buffer size Average value [ms] Standard deviation [ms]

1 0.014 0.0017

4 0.013 0.0016

20 0.012 0.0013

50 0.012 0.0012

100 0.012 0.0027

1000 0.012 0.0011

The highest value of average merging time shown in figure 7 and table 3 occurred for buffer of 1

QC object size. It confirms once again, that additional operations were performed to deal with the

overloaded socket buffer.

30

Figure 8: Number of merged objects per second.

Table 4: Average value and standard deviation of number of merged objects per second.

Buffer size Average value Standard deviation

1 377 22

4 398 51

20 399 28

50 400 33

100 400 233

1000 400 55

The results from figure 8 and table 4 confirms that for buffer of size 1 less objects were merged due

to the socket buffer overloading. By increasing capacity of the buffer to four messages (the same

number as producers), processing of the QC data was close to online proceeding.

Beside the fact, that for buffers of capacity more than 100 QC objects some fluctuation appears, the

average value was nearly the same for buffer size larger than 20 messages.

31

5.2 Data size

The second type of tests were focused on a resource consumption influence of the QC

objects size. Topology of the system consisted of two producers sending objects to one merger.

Capacity of the socket buffer was one thousand messages. Because the time of creating histograms

grows with the number of bins it was impossible to keep the same number of produced objects per

second for every examined object size. Production of 1 kB and 500 kB objects was limited to

twenty new QC objects per second. Objects of size 5 MB and 50 MB were produced at maximal

level of producers efficiency.

To create objects with a various sizes the following numbers of the histogram bins were used:

• 1 kB TH1F: 100 bins, 1000 entries, Gaussian distribution

• 500 kB TH1F: 130800 bins, 1000 entries, Gaussian distribution

• 5 MB TH1F: 1310000 bins, 1000 entries, Gaussian distribution

• 50 MB TH1F: 13110000 bins, 1000 entries, Gaussian distribution

Figure 9: Approximated merger CPU usage.

Table 5: Average value and standard deviation of approximated merger CPU usage.

Object size Average value [Hz] Standard deviation [Hz] Producer efficiency

1 kB 6265 19205 20 objects / s

500 kB 91209 30395 20 objects / s

5 MB 117047 30010 2.5 objects / s

50 MB 122281 188541 1 object / 4 s

32

The CPU usage increases with the size of the QC object as shown in figure 9. The results in table 5

show that merging operation for 500 kB (the most expected objects in the final QC system) objects

was utilizing almost fifteen times more clock tics than for 1 kB objects. For 50 MB objects

fluctuations which can be observed in figure 9 were present during the entire test. The reason was

waiting for the QC objects by merger while none of the objects was processed.

Figure 10: Merger VmRSS usage.

Table 6: Average value and standard deviation of merger VmRSS usage.

Object size Average value [kB] Standard deviation [kB] Producer efficiency

1 kB 134314 1420 20 objects / s

500 kB 134777 7872 20 objects / s

5 MB 151405 11528 2.5 objects / s

50 MB 144080 36913 1 object / 4 s

The Virtual memory Resident Set Size usage for 1 kB and 500 kB QC objects was holding at that

same level of 134 MB as shown in figure 10 and table 6. For 5 MB and 50 MB QC objects memory

has been freed several times during the test (figure 10). It indicates that the heap of the merger

program has been revamped after merging process.

33

Figure 11: Average merging time.

Table 7: Average value and standard deviation of average merging time.

Object size Average value [ms] Standard deviation [ms] Producer efficiency

1 kB 0.007 0.0006 20 objects / s

500 kB 1.478 0.1349 20 objects / s

5 MB 16.062 1.5767 2.5 objects / s

50 MB 156.059 19.7621 1 object / 4 s

The results presented in figure 11 and table 7 indicates that the average merging time of two QC

objects grows proportionally to the size of the QC objects for 500 kB, 5 MB and 50 MB object

sizes. Exception to this rule occurs for the 1kB data. Compering to the 500 kB objects the time of

merge is over 200 times smaller.

34

Figure 12: Number of merged objects per second.

Table 8: Average value and standard deviation of number of merged objects per second.

Object size Average value Standard deviation Producer efficiency

1 kB 40 3 20 objects / s

500 kB 40 3 20 objects / s

5 MB 5 1 2.5 objects / s

50 MB 0.5 0.86 1 object / 4 s

The QC objects of all examined sizes were processed online as shown in figure 12 and table 8. The

average values shows that fluctuations for these sizes of objects had no impact on the final results

which was expected.

35

5.2.1 Various producers number with 50MB objects

Because it was impossible to send the new QC objects with the same rate for each size the

decision was made to examine the influence of increasing number of producers of 50 MB TH1F

objects. Considered system had the same parameters for the previous tests (section 5.2). The only

difference is in number of producing components. For complete information it was required to

merge only two objects every time, regardless of the number of producers in the system topology.

Figure 13: Approximated merger CPU usage.

Table 9: Average value and standard deviation of approximated merger CPU usage.

Producers number Average value [Hz] Standard deviation [Hz] Merger input

2 121391 190227 1 object / 4 s

4 228624 301885 1 object / 2 s

6 335939 383198 1 object / 0,75 s

8 470588 418600 2 object / s

Results in figure 13 and table 9 indicates that the merger CPU average usage increases with the

number of producers in the running topology. Characteristic peaks are present for each number of

producers, moreover for 6 and 8 producers it reaches the maximal utilization of the computing core.

During the times when CPU usage was almost equal to zero merger component was waiting for

objects from the producers. Internal FairMQ logs confirmed that objects were not received for every

second of execution of the merging instance. It indicates that transport layer is not efficient for such

big objects.

36

Figure 14: Merger VmRSS usage.

Table 10: Average value and standard deviation of merger VmRSS usage.

Producers number Average value [kB] Standard deviation [kB] Merger input

2 143241 36382 1 object / 4 s

4 165092 62345 1 object / 2 s

6 218132 69115 1 object / 0,75 s

8 239883 112629 2 object / s

Figure 14 and table 10 show that the more objects were received by the merger the more memory

was used for the data processing. The standard deviation (table 10) value also grows with the

number of producers. It indicates that it is necessary to allocate more memory for processing larger

amount of data.

37

Figure 15: Average merging time.

Table 11: Average value and standard deviation of average merging time.

Producers number Average value [ms] Standard deviation [ms] Merger input

2 155.88 20.33 1 object / 4 s

4 151.25 10.60 1 object / 2 s

6 150.36 9.45 1 object / 0,75 s

8 162.19 13.41 2 object / s

Assuming a 10% precision of the results interpretation the average merging time did not change for

various numbers of producers as shown in figure 15 and table 11. It is expected result because

exactly two objects were merged for each case.

38

Figure 16: Number of merged objects per second.

Table 12: Average value and standard deviation of number of merged objects per second.

Producers number Average value Standard deviation Merger input

2 0.48 0.85 1 object / 4 s

4 0.95 1.42 1 object / 2 s

6 1.39 1.71 1 object / 0,75 s

8 1.87 1.88 2 object / s

Increasing the number of producers resulted in the larger number of objects which could be merged

by MergerDevice component. Result values in figure 16 and table 12 show that for 6 and 8

producers merger component could process the data online. The peaks visible in figure 16 indicates

that merging operation was not done in each measurement cycle. Instead, this operation was

performed later for the larger number of objects (even 6). The cycles with 0 merged object could be

utilized for deserialization and serialization of a QC object or for transport purposes.

39

5.3 Data type

The fourth type of tests was executed with 20 producers which were sending 20 QC objects

per second to one merger. Expected input of the MergerDevice component was 400 objects per

second. The size of an object was always 500 kB. The socket buffer capacity was set to one hundred

thousands messages.

Logs of FairMQ MergerDevice component shows that for THnF and TTree objects merger input

was smaller than expected. Despite the fact that all of producers were sending 20 new objects per

second for each type of the QC data, logs of the merger FairMQ device indicated that its input was

at lower level.

To obtain 500 kB objects of every object the following parameters were applied:

• TH1F: 130800 bins, 1000 entries, Gaussian distribution

• TH2F: 360×360 bins, 1000 entries, Gaussian distribution

• TH3F: 49×49×49 bins, 1000 entries, Gaussian distribution

• THnF: 17×17×17×17 bins, 1000 entries, Gaussian distribution

• TTree: 11 branches each with 1000 entries, Gaussian distribution

Figure 17: Approximated merger CPU usage.

Table 13: Average value and standard deviation of approximated merger CPU usage.

40

Producers number Average value [Hz] Standard deviation [Hz] Merger input

TH1F 944330 75643 400 objects / s

TH2F 871817 73544 400 objects / s

TH3F 989825 74378 400 objects / s

THnF 1095021 125530 170 objects / s

TTree 1128613 104134 96 objects / s

Assuming a 10 % precision on the CPU results interpretation the average values for TH1F, TH2F

and TH3F are at that same level as shown in figure 17 and table 13. Number of utilized processors

tics are visibly higher for THnF and TTree objects. Values that extends beyond 106 Hz indicates

utilization of more than one computing core.

Figure 18: Merger VmRSS usage.

Table 14: Average value and standard deviation of merger VmRSS usage.

Producers number Average value [kB] Standard deviation [kB] Merger input

TH1F 146544 8538 400 objects / s

TH2F 316677 18973 400 objects / s

TH3F 333981 27682 400 objects / s

THnF 17859282 10249448 170 objects / s

TTree 23266926 13564220 96 objects / s

Figure 18 shows that the memory consumption for processing THnF and TTree objects was

41

constantly increasing. It is due to the ROOT framework internal implementation of Merge function

of these objects. The QC data objects are constantly being copied for each call of this function. The

results of TH1F, TH2F and TH3F types show good performance with stabilization of consumed

resources on the level shown in table 14.

Figure 19: Average merging time.

Table 15: Average value and standard deviation of average merging time.

Producers number Average value [ms] Standard deviation [ms] Merger input

TH1F 1.731 0.161 400 objects / s

TH2F 1.588 0.151 400 objects / s

TH3F 1.827 0.165 400 objects / s

THnF 9.049 0.775 170 objects / s

TTree 18.256 1.891 96 objects / s

The results shown in figure 19 and table 15 indicate that the time needed to merge four objects is

the same for TH1F, TH2F and TH3F object types. The time of merging THnF and TTree object is

higher but remains at the same level during the whole test.

42

Figure 20: Number of merged objects per second.

Table 16: Average value and standard deviation of number of merged objects per second.

Data type Average value Standard deviation Merger input

TH1F 397 35 400 objects / s

TH2F 397 37 400 objects / s

TH3F 398 35 400 objects / s

THnF 166 23 170 objects / s

TTree 96 10 96 objects / s

The results shown in figure 20 and table 16 indicate that objects of TH1F, TH2F and TH3F were

processed online with the maximal merger input of 400 objects per second. Objects of type TTree

were also merged online but with smaller merger input. For THnF type there are observable drops

around 180 and 220 times. Nevertheless the average value indicates online processing assuming

10% precision of measurements.

43

5.4 Number of producers

The fourth set of tests was focused on the influence of increasing the number of producing

nodes in the running topology. The main purpose of the following tests was to examine scalability

of the system and find the maximal number of producers per one merger instance for efficient data

processing.

 Each producer was sending 100 QC objects every second. Each data object was of the TH1F type

and 1 kB size. The socket buffer capacity between producers and merger was set to one hundred

thousand QA objects. Number of required objects for one merge operation was defined by the

number of running producers.

Figure 21: Approximated merger CPU usage.

Table 17: Average value and standard deviation of approximated merger CPU usage.

Producers number Average value [Hz] Standard deviation [Hz]

2 24610 27769

5 32341 16632

10 48344 32039

50 159418 31588

100 284361 9067

250 634129 40860

375 922957 56279

425 996926 41565

500 998176 21390

44

The merger CPU usage as shown in figure 21 and table 17 was increasing by adding more instances

of producer program to the running test topology. The maximal value for one CPU core utilization

occurred for the topologies with 425 and 500 producers instances.

Figure 22: Merger VmRSS usage.

Table 18: Average value and standard deviation of merger VmRSS usage.

Producers number Average value [kB] Standard deviation [kB]

2 133222 5043

5 144084 1968

10 144849 6399

50 146473 6424

100 167114 2639

250 182485 7564

375 220472 6093

425 1292891 655169

500 2635385 1337465

The memory was stabilized for every case except for 425 and 500 producers. In figure 22 it can be

seen that VmRSS usage was constantly increasing during the entire test for the two highest numbers

of producers. The results in table 18 indicates that average memory consumption increases with

adding more producers to the test topology.

45

Figure 23: Average merging time.

Table 19: Average value and standard deviation of average merging time.

Producers number Average value [ms] Standard deviation [ms]

2 0.012 0.001

5 0.016 0.004

10 0.023 0.002

50 0.098 0.006

100 0.201 0.001

250 0.472 0.029

375 0.765 0.331

425 0.831 0.054

500 1.276 1.086

The results shown in figure 23 and table 19 indicate that the average merge time was increasing

with adding more producers to the test topology. It is expected result as more objects needs to be

merge for more producers instances.

Fluctuations of the results for 375 and 500 producers cases are visible in figure 23. These

fluctuations are higher for 500 producers which is the result of reaching the limit of available

computing resources for merger program.

46

Figure 24: Number of merged objects per second.

Table 20: Average value and standard deviation of number of merged objects per second.

Producers number Average value Standard deviation

2 200 28

5 501 64

10 1000 84

50 4977 368

100 9962 428

250 24840 1781

375 37307 3028

425 356578 2105

500 36341 1313

The number of merged objects per second shown in figure 24 and table 20 was increasing by adding

more producers to the test topology for up to 375 instances. Further addition of producing programs

resulted in a decrease of the number of merged objects per second.

47

5.5 Number of mergers

The last set of tests was examining the influence of increasing mergers components to the

system for predefined number of producers. The tests of number of producers showed that the

system is not efficient for 500 producers with one merger. That is why these number of producers

was selected for further investigation.

To assure that each merger has the same load, producers were spread into sustainable groups using

DDS topology file. Each group was sending objects to predefined merger instance. Number of

required objects for merge was equal to the number of producers per merger.

Each producer instance was sending TH1F QC objects with size of 1 kB (100 bins with 1000

entries) with rate of 100 objects per second. Each socket for every connection between producers

and merger had buffer with capacity of one hundred thousand messages.

Figure 25: Approximated merger CPU usage.

Table 21: Average value and standard deviation of approximated merger CPU usage.

Mergers number Average value [Hz] Standard deviation [Hz]

1 998176 21390

2 1277743 92076

4 1376229 186923

Figure 25 shows that doubling the number of mergers does not result in significant increase of the

CPU usage what can be also seen in table 21.

48

Figure 26: Merger VmRSS usage.

Table 22: Average value and standard deviation of merger VmRSS usage.

Mergers number Average value [kB] Standard deviation [kB]

1 2635385 1337465

2 380539 17962

4 677635 31132

The topology of one merger and 500 producers is not efficient because of too big input data to the

merger. One of the results is constantly growing memory as shown figure 26. This is because

objects in the buffer queue must wait for its processing turn and this queue is growing over the time.

Stabilization of the memory usage occurred when added more mergers to the topology. As it was

expected based on the previous results from the section 5.4 adding one merger was enough to

enable online processing. Stabilization of the consumed resources occurred for both 2 and 4

mergers but at different level. Consumption of the memory is higher when adding more mergers to

the system.

The results in table 22 show that the amount of memory allocated for 4 mergers is almost two times

bigger than for 2 mergers. It indicates that increasing number of mergers has larger impact on

consumed memory than on CPU usage.

49

Figure 27: Average merging time.

Table 23: Average value and standard deviation of average merging time.

Mergers number Average value [ms] Standard deviation [ms]

1 1.28 1.09

2 0.92 0.07

4 0.94 0.08

As shown in figure 27 major fluctuations occurred only for the topology with only one merger for

500 producers. Moreover average time of merge is larger than for other cases. The average value of

the merging time is the same for 2 and 4 merger (table 23) assuming a 10 % precision on the results

interpretation.

50

Figure 28: Number of merged objects per second.

Table 24: Average value and standard deviation of number of merged objects per second.

Mergers number Average value Standard deviation

1 36341 1313

2 49622 4720

4 49807 7578

The results shown in figure 28 and table 24 indicate that one merger in the topology of QC system

is not enough to carry out online data processing. Number of merged objects per second for

topology with 2 and 4 mergers demonstrate improved processing capabilities of the QC data. The

amount of the processed data for those topologies is close to the expected value of 50 thousand

merged objects per second.

51

6 Summary

Frameworks developed by the ALICE Collaboration and GSI/IT group provided all needed

tools to develop QC prototype of the O2 system. Nevertheless DDS is still in the development phase

and it was needed to align the prototype implementation to the newest libraries versions for several

times. Some of the important functionality of this framework are still in plans. An example can be a

dynamic topology reconfiguration which will be crucial feature of the final QC system

implementation.

Another problem is not efficient functionality of the merging operation of the ROOT framework

implementation for objects types THnF and TTree. Furthermore current implementation of the

ROOT framework has memory leaks which has to be eliminated in future releases.

The implemented QC prototype system allowed for estimating the performance and resource

consumption of different topologies and parameters.

Buffer size of the socket connecting producers with mergers affected system performance when it

was more than 20 times smaller than the overall merger input. For capacity of 1 message the

number of merged objects per second was equal to 94.21% of the overall input of merger which

indicates that some data had to be held in the buffer over time.

Tests carried out have shown that objects of size 1 kB, 500 kB, 5MB and 50 MB could be merged

online with the maximal merger input rate which was different for larger objects. Despite the fact

that for objects of size 5 MB input of the merger was 8 times smaller the CPU usage was at

comparable level as for 500 kB objects.

Data type tests have proved that the most suitable objects types for processing are TH1F, TH2F and

TH3F. This is because merging rate was at that same high level and processing was carried online

for the whole test. Due to constantly growing memory usage for tests of THnF and TTree types

efficiency of merging operation was not satisfactory because of impact on number of received and

processed objects per second.

52

Scalability of the system topology by increasing the number of producers resulted in increasing

performance of the merger component for up to 375 producers in the running topology as shown in

figure 29.

Figure 29: Number of merged objects per second for various number of producers in the test

topology.

The number of merged objects per second increases linearly for up to 375 producers. After that

point decrease of the performance is observed for 425 and 500 producers. It results in holding more

and more objects in the socket buffer resulting in reduce merger capabilities of merging objects.

53

Tests of various number of merger instances with a fixed number of producers proved that

processing of the data can be enhanced by unloading overloaded merger component by a redirection

part of input to another instance of merging node. Processing of input from 500 producers was not

sufficient for only one merger. By doubling number of mergers online processing was restored for

two mergers, each connected to 250 producers as shown in figure 30. Moreover hardware resources

consumed during execution does not increase significantly.

Figure 30: Merger VmRSS usage trend for various number of merger instances.

54

7 References

[1] K. Aamodt et al. (The ALICE Collaboration) “The ALICE experiment at the CERN LHC”,

JINST 3 (2008) S08002, http://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08002/pdf

[2] J. Alme et al. (for The ALICE Collaboration), Nucl. Instrum. Meth. A 622 (2010) 316–367,

http://www.sciencedirect.com/science/article/pii/S0168900210008910

[3] B. Abelev et al. (The ALICE Collaboration) “Upgrade of the ALICE Experiment: Letter of

Intent”, J. Phys. G: Nucl. Part. Phys. 41 087001 (2014),

http://iopscience.iop.org/article/10.1088/0954-3899/41/8/087001/pdf

[4] J. Adam et al. (The ALICE Collaboration) “Technical Design Report for the Upgrade of the

Online-Offline computing system”, CERN-LHCC-2015-006 (2015)

[5] “Boost 1.61.0 Library Documentation”, http://www.boost.org/doc/libs/1_61_0/

[6] FairRoot official web site, https://fairroot.gsi.de/

[7] “ROOT Data Analysis Framework, User’s Guide”, (2014),

https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html

[8] “0MQ – The Guide”, http://zguide.zeromq.org/page:all

[9] “The DDS User Manual v1.2”, http://dds.gsi.de/doc/nightly/dds.pdf

[10] Clinton Gormley, Zachary Tong “Elasticsearch: The Definitive Guide”,

https://www.elastic.co/guide/en/elasticsearch/guide/current/index.html

[11] “The QC prototype project”, https://github.com/AliceO2Group/AliceO2/tree/dev/Utilities/QC

55

https://github.com/AliceO2Group/AliceO2/tree/dev/Utilities/QC
https://www.elastic.co/guide/en/elasticsearch/guide/current/index.html
http://dds.gsi.de/doc/nightly/dds.pdf
http://zguide.zeromq.org/page:all
https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html
https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.htmlhttps://fairroot.gsi.de/
http://www.boost.org/doc/libs/1_61_0/
http://iopscience.iop.org/article/10.1088/0954-3899/41/8/087001/pdf
http://www.sciencedirect.com/science/article/pii/S0168900210008910
http://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08002/pdf

8 Remarks

The source code of developed QC system prototype together with installation and usage instructions

can be found at Github repository [11] or on the physical drive included to this thesis.

This research was supported in part by PL-Grid Infrastructure.

56

	1 Introduction
	1.1 ALICE experiment
	1.2 ALICE O2 system
	1.3 ALICE Quality Control System
	1.4 The scope of the thesis

	2 Used tools
	2.1 Programming language
	2.2 FairRoot framework
	2.2.1 ROOT
	2.2.2 FairMQ

	2.3 Dynamic Deployment System
	2.4 Elasticsearch

	3 Description of developed system
	3.1 System architecture
	3.1.1 ProducerDevice
	3.1.2 MergerDevice
	3.1.3 ViewerDevice
	3.1.4 MetricsExtractor

	3.2 Data flow
	3.2.1 QC Objects
	3.2.2 Control messages

	3.3 Software tests
	3.3.1 Unit tests
	3.3.2 Valgrind

	3.4 Execution environment

	4 Benchmark
	4.1 Parameters
	4.2 Metrics
	4.2.1 Central Processing Unit (CPU) usage
	4.2.2 Random Access Memory usage
	4.2.3 Average merging time
	4.2.4 Merged objects per second

	5 Results
	5.1 Buffer size tests
	5.2 Data size
	5.2.1 Various producers number with 50MB objects

	5.3 Data type
	5.4 Number of producers
	5.5 Number of mergers

	6 Summary
	7 References
	8 Remarks

