

HF jets analysis

09.03.2020 ALICE@IFJ meeting

Sebastian Bysiak

Sebastian Bysiak (IFJ PAN)

Outline

1. Progress in analysis

- $\circ \quad \text{ML model} \quad$
- dataset
- \circ experiments
- 2. Questions & issues
- 3. Plans for next week

Model & data - basic info

- 1. Default dataset:
 - sample: 2 x 500k (or 2 x 200k for experiments) jets
 - \circ $\,$ up to 15 tracks & 15 SV $\,$
 - o jet-level: Pt, Area, Eta, Phi, NumTracks, NumSV
 - SV: Lxy, SigmaLxy, Chi2, Dispersion, Mass
 - tracks: IPd, IPz, CovIPd, CovIPz, Pt, Eta, Phi
 - ... if not stated otherwise
- 2. ML model (BDT) trained on MC data
 - binary classification: b-jets vs udsg-jets
 - test set: 20%, pT-statified
 b- & usdg-jets have different spectra
 but no difference between train and test set

Sebastian Bysiak (IFJ PAN)

HFJ analysis

<u>4</u>

Sebastian Bysiak (IFJ PAN)

Sebastian Bysiak (IFJ PAN)

Sebastian Bysiak (IFJ PAN)

I will report <u>ROC AUC</u>,

0.01 difference in ROC AUC corresponds to

- 5% eff. @ mistagging rate = 0.001
- 5.6% eff. @ mistagging rate = 0.01
- 2.6% eff. @ mistagging rate = 0.1

Sebastian Bysiak (IFJ PAN)

Experiments

HFJ analysis

<u>9</u>

- Model trained only on jet-level observables (only pT, phi, eta, area)
 - terrible performance
 - better for very low and very high pT due to different spectra shape
 - \circ just for comparison, not to be used

Experiments

- Vary (lower) number of SV and tracks models trained only on tracks/SV + jet level parameters
 - adding more SV does not improve much
 - adding more tracks does, but ~10 should be enough

Experiments

- feature engineering on track's observables almost no diff. when trained with IP (up to 3% b-tag. eff), but without them it's quite large
- more complex models may benefit more from these transf. (simpler models: IP dominates)

features	roc_auc_train	roc_auc_test	bEff@mistag_1e-03	bEff@mistag_1e-02	bEff@mistag_1e-01
default	0.9434980755837	0.94049911871	0.40926023150578766	0.6327158178954474	0.8425210630265757
Track_Pt -> Track_PtFrac	0.9442104357400	0.94115147652	0.4138103452586315	0.6388659716492913	0.8440461011525288
phi,eta -> deltaPhi, deltaEta, deltaR	0.9478629633964	0.94479494434	0.45276131903297584	0.6554663866596665	0.8531963299082477
pt -> ptFrac & phi,eta -> deltaPhi, deltaEta, delt	0.9486315104862	0.94546739121	0.44221105527638194	0.6630665766644166	0.8541213530338259
no IP	0.7601006840335	0.74974257296	0.016450411260281506	0.0703017575439386	0.3407085177129428
no IP & pt -> ptFrac & phi,eta -> deltaPhi, delta	0.84672232995495	0.83923138271	0.05912647816195405	0.21035525888147202	0.5742643566089152
add Nsigma of IPd/IPz/IP3d	0.9478492635526	0.94494417809	0.45406135153378835	0.6546913672841821	0.8558963974099353

Plans for next week

- 1. Include c-jets
- 2. Compare with other's (Rudiger, Hadi Hassan, my MSc thesis)
- 3. Apply on data
- 4. Design selection criteria for SV (just sort by chi2 ?), at least vizualize sth

- add train curve on TPR-vs-FPR plot
- plot metrics as a func. of train iterations (train & test)

BACKUP

lower_edges=(57 9 12 16 21 28 36 45 57 | 70 85 99 115 132 150 169 190 212 235) higher_edges=(7 9 12 16 21 28 36 45 57 70 | 85 99 115 132 150 169 190 212 235 -1)

momentum dispersion: $p_T D = -$

angularity:

 $\sqrt{\sum_{i \in jet} p_{\mathrm{T},i}^2}$