Transversal momentum dependence and di-jets in p-p, p-Pb and Pb-Pb collisions

Based on
Phys.Lett. B795 (2019) 511-515
A. van Hameren, P. Kotko, K. Kutak, S. Sapeta
1811.06390 by Kutak, Płaczek, Straka
1911. XXXX van Hameren, Kutak, Płaczek, Rohrmoser, Tywoniuk
$p-p$ and $p-P b$

$p-A$ (dilute-dense) forward-forward di-jets

From: Piotr Kotko LxJet

There is certain class of processes where one can assume that partons in one of hadrons are just collinear with hadron and in other are not

QCD at high energies - hybrid factorization

Strongly decreasing in virtuality on-shell partons large x

$$
p_{1}+p_{2}=q_{1}+q_{2}+k
$$

Strongly decreasing
in longitudinal momentum
fractions of off-shell partons

$$
\frac{d \sigma_{\mathrm{SPS}}^{P_{1} P_{2} \rightarrow \text { dijets }+X}}{d y_{1} d y_{2} d p_{1 t} d p_{2 t} d \Delta \phi}=\frac{p_{1 t} p_{2 t}}{8 \pi^{2}\left(x_{1} x_{2} s\right)^{2}} \sum_{a, c, d} x_{1} f_{a / P_{1}}\left(x_{1}, \mu^{2}\right)\left|\overline{\mathcal{M}_{a g^{*} \rightarrow c d}}\right|^{2} \quad \mathcal{F}_{g / P_{2}}\left(x_{2}, k_{t}^{2}\right) \frac{1}{1+\delta_{c d}}
$$

New helicity based methods for ME
Kotko, K.K, van Hameren, '12

Definition of TMD - gauge links

The formula for HEF is strictly valid for large transverse momentum and is kind of conjectured. The gluon density Is defined in terms of evolution equation. Recent developments with formal approaches start from definition of what parton density is.

$$
\mathcal{F}\left(x, k_{T}\right)=2 \int \frac{d \xi^{-} d^{2} \xi_{T}}{(2 \pi)^{3} P^{+}} e^{i x P^{+} \xi^{-}-i \vec{k}_{T} \cdot \vec{\xi}_{T}}\langle P| \operatorname{Tr}\left\{\hat{F}^{i+}(0) \hat{F}^{i+}\left(\xi^{+}=0, \xi^{-}, \vec{\xi}_{T}\right)\right\}|P\rangle
$$

naive definition of gluon distribution

from P. Kotko, Bialasówka 2019

One needs also gauge link which accounts for exchange of collinear gluons between the soft and hard parts

$$
\mathcal{F}\left(x, k_{T}\right)=2 \int \frac{d \xi^{-} d^{2} \xi_{T}}{(2 \pi)^{3} P^{+}} e^{i x P^{+} \xi^{-}-i \vec{k}_{T} \cdot \vec{\xi}_{T}}\langle P| \operatorname{Tr}\left\{\hat{F}^{i+}(0) \mathcal{U}_{C_{1}} \hat{F}^{i+}(\xi) \mathcal{U}_{C_{2}}\right\}|P\rangle
$$

Definition of TMD - gauge links

Two basic structures arise:

Semi Inclusive DIS

final state interactions

Drell-Yan

$$
\Phi_{q}^{[+]}\left(x, p_{T}\right)=\int \frac{\mathrm{d}(\xi \cdot P) \mathrm{d}^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle H| \bar{\psi}(0) \mathcal{U}^{[+]} \psi(\xi)|H\rangle \quad \begin{aligned}
& \text { C.J. Bomhof, P.J. Mulders, F. Pijlman } \\
& \text { Eur.Phys.J. C47 (2006) 147-162 }
\end{aligned}
$$

$$
\mathcal{U}^{[\pm]}=U_{\left[\left(0^{-}, \mathbf{0}_{T}\right) ;\left(\pm \infty^{-}, \mathbf{0}_{T}\right)\right]}^{n} U_{\left[\left(\pm \infty^{-}, \mathbf{0}_{T}\right) ;\left(\pm \infty^{-}, \boldsymbol{\infty}_{T}\right)\right]}^{T} U_{\left[\left(\pm \infty^{-}, \boldsymbol{\infty}_{T}\right) ;\left(\pm \infty^{-}, \boldsymbol{\xi}_{T}\right)\right]}^{T} U_{\left[\left(\pm \infty^{-}, \boldsymbol{\xi}_{T}\right) ;\left(\xi^{-}, \boldsymbol{\xi}_{T}\right)\right]}^{n}
$$

Gauge links and dijets

+ similar diagrams with 2,3,....gluon exchanges.
All this need to be resummed
C.J. Bomhof, P.J. Mulders, F. Pijlman Eur.Phys.J. C47 (2006) 147-162
$\mathcal{F}\left(x, k_{T}\right)=2 \int \frac{d \xi^{-} d^{2} \xi_{T}}{(2 \pi)^{3} P^{+}} e^{i x P^{+} \xi^{-}-i \vec{k}_{T} \cdot \vec{\xi}_{T}}\langle P| \operatorname{Tr}\left\{\hat{F}^{i+}(0) \mathcal{U}_{C_{1}} \hat{F}^{i+}(\xi) \mathcal{U}_{C_{2}}\right\}|P\rangle$
Hard part defines the path of the gauge link $\quad \mathcal{U}^{[C]}(\eta ; \xi)=\mathcal{P} \exp \left[-i g \int_{C} \mathrm{~d} z \cdot A(z)\right]$

Improved Transversal Momentum Dependent Factorization

$$
\frac{d \sigma_{\mathrm{SPS}}^{P_{1} P_{2} \rightarrow \text { dijets }+X}}{d y_{1} d y_{2} d p_{1 t} d p_{2 t} d \Delta \phi}=\frac{p_{1 t} p_{2 t}}{8 \pi^{2}\left(x_{1} x_{2} s\right)^{2}} \sum_{a, c, d} x_{1} f_{a / P_{1}}\left(x_{1}, \mu^{2}\right)\left|\overline{\mathcal{M}_{a g^{*} \rightarrow c d}}\right|^{2} \quad \mathcal{F}_{g / P_{2}}\left(x_{2}, k_{t}^{2}\right) \frac{1}{1+\delta_{c d}}
$$

Generalization of hybrid formula but no kt in ME
Fabio Dominguez, Bo-Wen Xiao, Feng Yuan
Phys.Rev.Lett. 106 (2011) 022301
F. Dominguez, C. Marquet, Bo-Wen Xiao, F. Yuan Phys.Rev. D83 (2011) 105005
Appropriate in back-to-back configuration
gauge invariant amplitudes with k_{t} and TMDs

Using HEF motivated sum over polarization for low x gluons we included kt in ME

Conjecture P. Kotko K. Kutak , C. Marquet , E. Petreska, S. Sapeta, A. van Hameren, JHEP 1509 (2015) 106

Appropriate in any configuration

Example for $g^{\star} g \rightarrow g g$

$$
\frac{d \sigma^{p A \rightarrow g g X}}{d^{2} P_{t} d^{2} k_{t} d y_{1} d y_{2}}=\frac{\alpha_{s}^{2}}{\left(x_{1} x_{2} s\right)^{2}} x_{1} f_{g / p}\left(x_{1}, \mu^{2}\right) \sum_{i=1}^{6} \mathcal{F}_{g g}^{(i)} H_{g g \rightarrow g g}^{(i)}
$$

Improved Transversal Momentum Dependent Factorization

$$
\frac{d \sigma_{\mathrm{SPS}}^{P_{1} P_{2} \rightarrow \text { dijets }+X}}{d y_{1} d y_{2} d p_{1 t} d p_{2 t} d \Delta \phi}=\frac{p_{1 t} p_{2 t}}{8 \pi^{2}\left(x_{1} x_{2} s\right)^{2}} \sum_{a, c, d} x_{1} f_{a / P_{1}}\left(x_{1}, \mu^{2}\right)\left|\overline{\mathcal{M}_{a g^{*} \rightarrow c d}}\right|^{2} \quad \mathcal{F}_{g / P_{2}}\left(x_{2}, k_{t}^{2}\right) \frac{1}{1+\delta_{c d}}
$$

Generalization of hybrid ME
Fabio Dominguez, Bo-Wen Xi, Phys.Rev.Lett. 106 (2011) 022
F. Dominguez, C. Marquet, Bo Phys.Rev. D83 (2011) 105005 Appropriate in back-to-back configuration gauge invariant amplitudes with k_{t} and TMDs

Can be obtained from CGC
T. Altinoluk, R. Boussarie, Piotr Kotko JHEP 1905 (2019) 156

Example for $g^{\star} g \rightarrow g g$

$$
\frac{d \sigma^{p A \rightarrow g g X}}{d^{2} P_{t} d^{2} k_{t} d y_{1} d y_{2}}=\frac{\alpha_{s}^{2}}{\left(x_{1} x_{2} s\right)^{2}} x_{1} f_{g / p}\left(x_{1}, \mu^{2}\right) \sum_{i=1}^{6} \mathcal{F}_{g g}^{(i)} H_{g g \rightarrow g g}^{(i)}
$$

Plots of ITMD gluons

Not negligible differences at large $k_{t} \rightarrow$ differences at small angles

Plots of ITMD gluons

rough analogy to splitting of spectral lines
in presence of a new scale

Kotko, K.K, Marquet, Petreska, Sapeta, van Hameren JHEP 1612 (2016) 034

Standard HEF gluon density

The JIMWLK equation is a renormalization group equation for the Wilson lines, obtained by integrating out the quantum fluctuations at smaller and smaller Bjorken-x.
C. Marquet, E. Petreska, C. Roiesnel JHEP 1610 (2016) 065

The other densities are flat at low $k t \rightarrow$ less saturation
Not negligible differences at large $k_{t} \rightarrow$ differences at small angles

Forward physics and Sudakov form factor

$T_{s}\left(\mu^{2}, k^{2}\right)=\exp \left(-\int_{k^{2}}^{\mu^{2}} \frac{d k^{\prime 2}}{k^{\prime 2}} \frac{\alpha_{s}\left(k^{\prime 2}\right)}{2 \pi} \sum_{a^{\prime}} \int_{0}^{1-\Delta} d z^{\prime} P_{a^{\prime} a}\left(z^{\prime}\right)\right)$
A. H. Mueller, Bo-Wen Xiao, Feng Yuan Phys.Rev.Lett. 110 (2013) no.8, 082301

Phys. Rev. D 88, 114010 (2013)
A. H. Mueller, Bo-Wen Xiao, Feng Yuan

Phys.Lett. B737 (2014) 335-340
A. van Hameren, P. Kotko, K. Kutak, S. Sapeta
K. Kutak

Phys.Rev. D91 (2015) no.3, 034021
I. Balitsky, A. Tarasov

JHEP 1510 (2015) 017
A.H. Mueller, Lech Szymanowski,

Samuel Wallon, Bo-Wen Xiao, Feng Yuan
JHEP 1603 (2016) 096
Nucl.Phys. B921 (2017) 104-126
B. Xiao, F. Yuan, J. Zhou.

Sudakov form factor

The relevance in low x physics at linear level recognized by: Catani, Ciafaloni, Fiorani,Marchesini; Kimber,Martin,Ryskin; Collins, Jung

Sudakov - no emision probability. Resumes unresloved real and virtual emissions. Standard thing in Monte Carlo.
Comes from misscancelation of virtual and real diagrams

μ hard scale
Survival probability of the gap without emissions
A. H. Mueller, Bo-Wen Xiao, Feng Yuan

Phys.Rev.Lett. 110 (2013) no.8, 082301
Phys. Rev. D 88, 114010 (2013)
A. H. Mueller, Bo-Wen Xiao, Feng Yuan

Phys.Lett. B737 (2014) 335-340
A. van Hameren, P. Kotko, K. Kutak, S. Sapeta
K. Kutak

Phys.Rev. D91 (2015) no.3, 034021
I. Balitsky, A. Tarasov

JHEP 1510 (2015) 017
A.H. Mueller, Lech Szymanowski,

Samuel Wallon, Bo-Wen Xiao, Feng Yuan
JHEP 1603 (2016) 096
Nucl.Phys. B921 (2017) 104-126
B. Xiao, F. Yuan, J. Zhou.

Decorelations inclusive scenario-central forward

No saturation... visibleSudakov effects

Phys.Lett. B737 (2014) 335-340
A. van Hameren, P. Kotko, K. Kutak, S. Sapeta

Decorelations inclusive scenario-central forward

Decorelations inclusive scenario-central forward

Decorelations inclusive scenario

Forward-forward dijets- elements going into our prediction

The ITMD gluon's were obtained using:

Proton's KS gluon density - fitted to F2 proton HERA data Balitsky-Kovchegov equation + kinematical constraint + subleading in low x, low z parts of splitting function.
Lead's KS gluon density - normalized to number of nucleons. Modified radius as compared to proton's radius

The Sudakov:

It has been was obtained from exponentiation of DGLAP splitting function
Total cross section is unchanged. Cross section at large angles is suppressed. Events with moderate angles are enhanced.

The cross section:

was calculated using:

- KaTie Monte Carlo (van Hameren Comput.Phys.Commun. 224 (2018) 371-380)
- MC for p-p, p-A, soon DIS and A-A, calculates
matrix elements in kt factorization and ITMD, matrix elements agree with the once obtained from Lipatov effectve action. Via merging with CASCADE accounts for ISR and FSR
- cross-checked with LxJet Monte Carlo (Piotr Kotko) - dedicated MC for jets in kt factorization

Data

Signature of broadening in forward-forward dijets

ATLAS Phys.Rev. C100 (2019) no.3, 034903
A. Hameren, P. Kotko, K. Kutak, S. Sapeta

Phys.Lett. B795 (2019) 511-515

Data: number of dijets normalized to number of single inclusive jets. We can not calculate that. We can compare shapes.
Procedure: fit normalization to p-p data.
Use that both for $p-p$ and $p-P b$. Shift $p-P b$ data
The procedure allows for visualization of broadening

Other approaches

Other calculations which support our result - di-hadrons production

 ITMD, no Sudakov

Expectation:
Sudakov
will broaden the distribution
G. Giacalone, C. Marquet, M. Matas Phys.Rev. D99 (2019) no.1, 014002
J. Albacete, C, Marquet

Phys.Rev.Lett. 105 (2010) 162301

Correlation limit of CGC + Sudakov no kt in ME
A.Stasto, S. Wei, B. Xiao, F. Yuan Phys.Lett. B784 (2018) 301-306
$P b-P b$

Jet quenching

From vacuum to medium

vacuum

vacuum x-section $=$ ME * pdf * fragmentaion in vacum complete x-section $=M E * p d f *$ fragmentaion in medium +
ME * pdf * fragmentation in vacum

LPM and BDMPS-Z

Multiple soft scattering resummed to all orders. It is expected to be important for short mean free-path

Because medium-induced radiation can occur anywhere along the medium with equal probability, the radiation spectrum is expected to scale linearly with L.

Many scattering centers act coherently during the radiation over time $t_{c o h}(\ll t$ $m t(p)$.

$$
\omega \frac{\mathrm{d} I}{\mathrm{~d} \omega} \simeq \alpha_{s} \frac{L}{t_{\text {coh }}}=\alpha_{s} \sqrt{\frac{\omega_{c}}{\omega}} \frac{\mathrm{~d}_{\mathrm{BH}}}{\mathrm{~d} \omega} \simeq \alpha_{s} \frac{L}{\ell_{\mathrm{mfp}}}=\alpha_{s} N_{\text {scatt }} t_{\text {coh }} \equiv \sqrt{\frac{\omega}{\hat{q}}}
$$

Jet medium interaction

scattering...

Transverse momentum transfer!

$$
p \rightarrow p+k_{T}
$$

Scattering Kernel: $C\left(k_{T}\right)$

Average transfer: \hat{q}
...splitting...

Bremsstrahlung as in vacuum.

Momentum distribution:

$$
p \rightarrow z p
$$

+Momentum transfer:

$$
p \rightarrow z p+k_{T}
$$

Kernel: $\mathcal{K}\left(z, k_{T}\right)$
from Martin Rohmoser

Jet medium interaction

scattering...

Transverse momentum transfer!

$$
p \rightarrow p+k_{T}
$$

Scattering Kernel: $C\left(k_{T}\right)$

Average transfer: \hat{q}

Bremsstrahlung as in vacuum.

Momentum distribution:

$$
p \rightarrow z p
$$

+Momentum transfer:

$$
p \rightarrow z p+k_{T}
$$

Kernel: $\mathcal{K}\left(z, k_{T}\right)$
from Martin Rohmoser

LPM and BDMPS-Z

$$
t_{b r} \sim \sqrt{\frac{2 \omega}{\varphi}}
$$

$t_{b r} \sim t_{m f p}:$ one scattering + radiation
\quad...Bethe-Heitler spectrum
$t_{b r} \gg t_{m f p}:$ coherent radiation

$$
\omega \frac{d I}{d \omega} \sim \alpha_{s} \frac{L}{t_{b r}}=\alpha_{s} \sqrt{\frac{\omega_{c}}{\omega}}
$$

Energy distribution of radiated gluons
maximal energy that can be taken by single gluon

$$
\frac{\partial}{\partial t} D(x, t)=\frac{1}{t^{*}} \int_{0}^{1} d z \mathcal{K}(z)\left[\sqrt{\frac{z}{x}} D\left(\frac{x}{z}, t\right) \theta(z-x)-\frac{z}{\sqrt{x}} D(x, t)\right]
$$

Solution for energy distribution
 - simplified kernel vs. complete kernel

The BDIM equation - generalization of BDMPS-Z

Blaizot, Dominguez, lancu, Mehtar-Tani '12

$$
\frac{\partial}{\partial t} D(x, \mathbf{k}, t)=\frac{1}{t^{*}} \int_{0}^{1} d z \mathcal{K}(z)\left[\frac{1}{z^{2}} \sqrt{\frac{z}{x}} D\left(\frac{x}{z}, \frac{\mathbf{k}}{z}, t\right) \theta(z-x)-\frac{z}{\sqrt{x}} D(x, \mathbf{k}, t)\right]
$$

Inclusive gluon distribution as produced by hard jet

$$
+\int \frac{d^{2} \mathbf{q}}{(2 \pi)^{2}} C(\mathbf{q}) D(x, \mathbf{k}-\mathbf{q}, t)
$$

$$
\begin{aligned}
& \frac{1}{t^{*}}=\frac{\bar{\alpha}}{\tau_{\mathrm{br}}(E)}=\bar{\alpha} \sqrt{\frac{\hat{q}}{E}} \\
& C(\mathbf{q})=w(\mathbf{q})-\delta(\mathbf{q}) \int d^{2} \mathbf{q}^{\prime} w\left(\mathbf{q}^{\prime}\right)
\end{aligned}
$$

Equation describes interplay of rescatterings and branching. This particular equation has k_{t} independent kernel. This is an approximation. The whole broadening comes from rescattering. Energy of emitted gluon is much larger than its transverse momentum

Rearrangement of the equation for gluon density

procedure almost the same as for energy distribution

$$
\begin{aligned}
\frac{\partial}{\partial t} D(x, \mathbf{k}, t) & =\frac{1}{t^{*}} \int_{0}^{1} d z \mathcal{K}(z)\left[\frac{1}{z^{2}} \sqrt{\frac{z}{x}} D\left(\frac{x}{z}, \frac{\mathbf{k}}{z}, t\right) \theta(z-x)-\frac{z}{\sqrt{x}} D(x, \mathbf{k}, t)\right] \\
& +\int \frac{d^{2} \mathbf{q}}{(2 \pi)^{2}} C(\mathbf{q}) D(x, \mathbf{k}-\mathbf{q}, t), \quad \text { Kutak, Płaczek, Straka } 19
\end{aligned}
$$

Sudakov form factor resumes virtual and unresolved real emissions
mathematics: transformation of differential equation to integral equation
physics: resummation of virtual and unresolved real emissions

$$
\begin{aligned}
D(x, \mathbf{k}, \tau)= & e^{-\Psi(x)\left(\tau-\tau_{0}\right)} D\left(x, \mathbf{k}, \tau_{0}\right) \\
+ & \int_{\tau_{0}}^{\tau} d \tau^{\prime} \int_{0}^{1} d z \int_{0}^{1} d y \int d^{2} \mathbf{k}^{\prime} \int d^{2} \mathbf{q} \mathcal{G}(z, \mathbf{q}) \\
& \times \delta(x-z y) \delta\left(\mathbf{k}-\mathbf{q}-z \mathbf{k}^{\prime}\right) e^{-\Psi(x)\left(\tau-\tau^{\prime}\right)} D\left(y, \mathbf{k}^{\prime}, \tau^{\prime}\right)
\end{aligned}
$$

Broadening of jet

Such picture is not possible is fou assume strongly coupled plasma

Non gaussianity

Sum of many gaussians with different width.
This is a result of the exact treatment of the gluon transverse-momentum broadening due to an arbitrary number of the collisions with the medium together with its shrinking due an arbitrary number of the emission branching.

Quenching line

Non-termalized medium

Termalized medium

Thermalized medium suppresses jets stronger
Universal behavior at larger times
The jet gets delocalized in transverse in transverse plane and lower and lower "x"

From cacum to medium

$$
\begin{aligned}
& \qquad \begin{aligned}
\frac{d \sigma_{p p}}{d y_{1} d y_{2} d^{2} q_{1 T} d^{2} q_{2 T}}= & \int \frac{d^{2} k_{1 T}}{\pi} \frac{d^{2} k_{2 T}}{\pi} \frac{1}{16 \pi^{2}\left(x_{1} x_{2} s\right)^{2}} \overline{\left|\mathcal{M}_{g^{*} g^{*} \rightarrow g g}^{\text {off-shell }}\right|^{2}} \\
& \times \delta^{2}\left(\vec{k}_{1 T}+\vec{k}_{2 T}-\vec{q}_{1 T}-\vec{q}_{2 T}\right) \mathcal{F}_{g}\left(x_{1}, k_{1 T}^{2}, \mu_{F}^{2}\right) \mathcal{F}_{g}\left(x_{2}, k_{2 T}^{2}, \mu_{F}^{2}\right)
\end{aligned} \\
& \frac{\mathrm{d} \sigma_{A A}}{\mathrm{~d} \Omega_{p_{1}} \Omega_{p_{2}}}=\int \mathrm{d}^{2} \boldsymbol{q}_{1} \int \mathrm{~d}^{2} \boldsymbol{q}_{2} \int_{0}^{1} \frac{\mathrm{~d} \tilde{x}_{1}}{\tilde{x}_{1}^{2}} \int_{0}^{1} \frac{\mathrm{~d} \tilde{x}_{2}}{\tilde{x}_{2}^{2}} D\left(\tilde{x}_{1}, \boldsymbol{p}_{1}-\boldsymbol{q}_{1}, \tau\left(p_{1}^{+} / \tilde{x}_{1}\right)\right) D\left(\tilde{x}_{2}, \boldsymbol{p}_{2}-\boldsymbol{q}_{2}, \tau\left(p_{2}^{+} / \tilde{x}_{2}\right)\right) \\
& \text { Our assumptions: }
\end{aligned} \quad \begin{aligned}
& \text { - only gluonic jets }
\end{aligned}
$$

- uniform plasma
- we neglect shower outside of plasma
- we neglect vacum like emissions in plasma
- we assume bjorken model to tune the temperature to describe $R_{\text {AA }}$

$R_{\text {AA }}$ nuclear modificatio ratio
 1911.05463

Van Hameren, Kutak,Placzek, Rohrmoser

Azimutal decorelations

1911.05463

Van Hameren, Kutak,Placzek, Rohrmoser

Suppression at large angles
Enhancement at moderate angles

Azimutal decorelations - normalized to maximum

1911.05463

Van Hameren, Kutak,Placzek, Rohrmoser

Summary and outlook

P-p, p-A
New factorization formula for dilute-dense collision has been obtained

- accounts for nonlinear evolution of low x gluon density
- accounts for correct gauge structure of the theory
- can be obtained from Color Glass Condensate in appropriate limit

Evidence for need for Sudakov and saturation in forward jets has been found - visible broadening

A-A

- jet evolution based on coherent emission and scattering
- combination with of MINCAS with KATIE: allows for calculation of jet-observables
- results differ from pure Gaussian broadening...

In the future we want to study more forward processes and in particular combine jet quenching and saturation

Example qg \rightarrow q

We want to get TMD distribution of

Resummation
replacement of deltas with operators

We need to resum all

$$
\mathcal{M}=\left(t^{A_{1}}\right)_{j_{3}}^{i_{2}} \mathcal{A}(2,1,3) \quad \text { collinear emissions from }
$$

$$
\mathcal{M}^{*} \mathcal{M} \delta^{i_{2} i_{2}^{\prime}} \delta_{j_{3} j_{3}^{\prime}}=\left(t^{A_{1}}\right)_{j_{3}}^{i_{2}}\left(t^{A_{1}^{\prime}}\right)_{i_{2}^{\prime}}^{j_{3}^{\prime}} \delta^{A_{1} A_{1}^{\prime}} \delta_{i_{2}^{\prime}}^{i_{2}} \delta_{j_{3}}^{j_{3}^{\prime}} \mathcal{A}^{*}(2,1,3) \mathcal{A}(2,1,3)
$$

$$
\left(t^{A_{1}}\right)_{j_{3}}^{i_{2}}\left(t^{A_{1}^{\prime}}\right)_{i_{2}^{\prime}}^{j_{3}^{\prime}}\left(\mathcal{U}^{[+]}\right)_{i_{2}^{\prime}}^{i_{2}}\left(\mathcal{U}^{[-] \dagger}\right)_{j_{3}}^{j_{3}^{\prime}} F^{A_{1}^{\prime}}(0) F^{A_{1}}(\xi)=
$$

$$
=(F(\xi))_{j_{3}}^{i_{2}}\left(\mathcal{U}^{[-\rceil \dagger}\right)_{j_{3}}^{j_{3}^{\prime}}(F(0))_{i_{2}^{\prime}}^{j_{3}^{\prime}}\left(\mathcal{U}^{[+]}\right)_{i_{2}^{\prime}}^{i_{2}}=\operatorname{Tr}\left[F(\xi) \mathcal{U}^{[-] \dagger} F(0) \mathcal{U}^{\mathfrak{l}+]}\right]
$$

$$
\mathcal{F}_{q g}^{(1)}\left(x, k_{T}\right)=2 \int \frac{d \xi^{-} d^{2} \xi_{T}}{(2 \pi)^{3} P^{+}} e^{i x P^{+} \xi^{-}-i \vec{k}_{T} \cdot \vec{\xi}_{T}}\left\langle\operatorname{Tr}\left[\hat{F}^{i+}(\xi) \mathcal{U}^{[-\dagger \dagger} \hat{F}^{i+}(0) \mathcal{U}^{[+]}\right]\right\rangle
$$

