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● Cluster analysis
● Mixed Density Network
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What is clustering?

• A grouping of data objects such that the objects within a group are 
similar (or related) to one another and different from (or unrelated 
to) the objects in other groups

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized
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Outliers 

• Outliers are objects that do not belong to any cluster or form 

clusters of very small cardinality (number of cluster members).

• In some applications we are interested in discovering outliers, not 

clusters (outlier analysis)

cluster

outliers
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The clustering task

• Group observations into groups so that the observations belonging in the 
same group are similar, whereas observations in different groups are 
different =>

• We need a distance between points:

The distance d(x, y) between two objects x and y is a metric if:
– d(i, j)0 (non-negativity)
– d(i, i)=0 (isolation)
– d(i, j)= d(j, i) (symmetry)
– d(i, j) ≤ d(i, h)+d(h, j) (triangular inequality)
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Distance

● Euclidian

● Manhattan

● Cosine similarity

● …. many other
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Data Structures

• data matrix

• Distance matrix
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Non-hierarchical methods
the k-means algorithm

• Given a set X of n points in a d-dimensional space and an integer k

• Task: choose a set  of k points (cluster centers) {c1, c2,…,ck} in the d-

dimensional space to form clusters {C1, C2,…,Ck} such that

is minimized

• Some special cases: k = 1, k = n
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The k-means algorithm

• Randomly pick k cluster centers  {c1,…,ck}

• For each i, set the cluster Ci to be the set of points in X that are 

closer to ci than they are to cj for all i≠j

• For each i let ci be the center of cluster Ci (mean of the vectors in Ci)

• Repeat until convergence
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Properties of the k-means algorithm

• Finds a local optimum

• Converges often quickly (but not always)

• The choice of initial points can have large influence 
in the result
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Two different K-means clusterings
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Some alternatives to random initialization of 
the central points

• Multiple runs
– Helps, but probability is not on your side 

• Select original set of  points by methods other than random . 
E.g.,  pick the most distant (from each other) points as cluster 
centers (kmeans++ algorithm in Scikit Learn)
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Example of k-means algorithm

●https://github.com/marcinwolter/MachineLearnin2019/blob/maste
r/plot_kmeans_assumptions.ipynb

●The KMeans algorithm clusters data by trying to separate 
samples in n groups of equal variance, minimizing a criterion 
known as the inertia or within-cluster sum-of-squares (see 
below). This algorithm requires the number of clusters to be 
specified. It scales well to large number of samples and has 
been used across a large range of application areas in many 
different fields.

https://github.com/marcinwolter/MachineLearnin2019/blob/master/plot_kmeans_assumptions.ipynb
https://github.com/marcinwolter/MachineLearnin2019/blob/master/plot_kmeans_assumptions.ipynb
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Hierarchical Clustering 

• Produces a set of nested clusters organized as a 
hierarchical tree

• Can be visualized as a dendrogram
– A tree-like diagram that records the sequences of 

merges or splits

1 3 2 5 4 6
0

0.05

0.1

0.15

0.2

1

2

3

4

5

6

1

2
3 4

5



7.02.2020 14M. Wolter

Strengths of Hierarchical Clustering

• No assumptions on the number of clusters
– Any desired number of clusters can be obtained by 

‘cutting’ the dendrogram at the proper level

• Hierarchical clustering may correspond to some 
meaningful features
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Hierarchical Clustering

• Two main types of hierarchical clustering
– Agglomerative:  

• Start with the points as individual clusters
• At each step, merge the closest pair of clusters until only one 
cluster (or k clusters) left

– Divisive:  
• Start with one, all-inclusive cluster 
• At each step, split a cluster until each cluster contains a point 
(or there are k clusters)
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Complexity of hierarchical clustering

• Distance matrix is used for deciding which clusters 
to merge/split

• At least quadratic in the number of data points

• Not usable for large datasets
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Agglomerative clustering algorithm

• Most popular hierarchical clustering technique

• Basic algorithm

1. Compute the distance matrix between the input data points

2. Let each data point be a cluster

3. Repeat

4.    Merge the two closest clusters

5.    Update the distance matrix

6. Until only a single cluster remains
 

• Key operation is the computation of the distance between two 
clusters

– Different definitions of the distance between clusters lead to  
different algorithms
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Input / Initial setting

• Start with clusters of individual points and a 
distance/proximity matrix

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.Distance/Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12
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Intermediate State

• After some merging steps, we have some clusters 
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C2 C5
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C2C1
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7.02.2020 20M. Wolter

Intermediate State

• Merge the two closest clusters (C2 and C5)  and update the distance 
matrix. 
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After Merging

• “How do we update the distance matrix?” 
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Distance between two clusters

• Each cluster is a set of points

• How do we define distance between two sets of 
points?
– Lots of alternatives

– Not an easy task
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Distance between two clusters

• Single-link distance between clusters Ci and Cj is 

the minimum distance between any object in Ci 

and any object in Cj 

• The distance is defined by the two most similar 
objects

   jiyxjisl CyCxyxdCCD  ,),(min, ,
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Strengths of single-link clustering

Original Points Two Clusters

• Can handle non-elliptical shapes
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Limitations of single-link clustering

Original Points Two Clusters

• Sensitive to noise and outliers
• It produces long, elongated clusters
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Distance between two clusters

• Complete-link distance between clusters Ci and Cj 

is the maximum distance between any object in Ci 

and any object in Cj 

• The distance is defined by the two most dissimilar 
objects

   jiyxjicl CyCxyxdCCD  ,),(max, ,
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Strengths of complete-link clustering

Original Points Two Clusters

•  More balanced clusters (with equal diameter)
•  Less susceptible to noise
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Limitations of complete-link clustering

Original Points Two Clusters

• Tends to break large clusters
•  All clusters tend to have the same diameter – small  
clusters are merged with larger ones
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Distance between two clusters

• Group average distance between clusters Ci 
and Cj is the average distance between any 
object in Ci and any object in Cj 
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Distance between two clusters

• Ward’s distance between clusters Ci and Cj is the 
difference between the total within cluster sum of 
squares for the two clusters separately, and the within 
cluster sum of squares resulting from merging the two 
clusters in cluster Cij

• ri: centroid of Ci

• rj: centroid of Cj

• rij: centroid of Cij
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Ward’s distance for clusters

• Similar to group average and centroid distance

• Less susceptible to noise and outliers

• Hierarchical analogue of k-means
– Can be used to initialize k-means
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Comparison of distance measurements

https://github.com/marcinwolter/MachineLea
rnin2019/blob/master/plot_linkage_comparis
on.ipynb

https://github.com/marcinwolter/MachineLearnin2019/blob/master/plot_linkage_comparison.ipynb
https://github.com/marcinwolter/MachineLearnin2019/blob/master/plot_linkage_comparison.ipynb
https://github.com/marcinwolter/MachineLearnin2019/blob/master/plot_linkage_comparison.ipynb
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Cluster analysis

●Clustering analysis is broadly used in many applications 
such as market research, pattern recognition, data 
analysis, and image processing.  

●As a data mining function, cluster analysis serves as a tool 
to gain insight into the distribution of data to observe 
characteristics of each cluster.
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