

Machine learning Lecture 7

Minimum of -219.8012 occurs at 4.8779

Marcin Wolter IFJ PAN

- Training cross-validation.
- Optimization of hyperparameters.
- Cluster analysis

24 January 2020

Supervised training

Overtraining

3

- This effect appears for all ML algorithms.
- Remedy checking with another, independent dataset.

How to train a ML algorithm?

- How to avoid **overtraining** while learning?
- Should we use one sample for **training** and another for **validating**?
- Then we increase the error we use just a part of data for training.
- Second remark: to avoid ovetraining and find the performance of the trained algorithm we should use one more, third data sample to measure the final performance of the ML algorithm.
- How to optimize the hyperparameters of the ML algorithm (number of trees and their depth for BDT, number of hidden layers, nodes for Neural Network)?

Validation

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error $\overline{\text{err}}$, while the light red curves show the conditional test error $\text{Err}_{\mathcal{T}}$ for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error Err and the expected training error $\text{E}[\overline{\text{err}}]$.

Source: Elements of Statistical Learning

24.01.2020

Cross-validation

- We have independent training sample L_n and a test sample T_m .
- Error level of the classifier $\hat{d}(\boldsymbol{x}) = \hat{d}(\boldsymbol{x}; \mathcal{L}_n)$ built on the training sample L_n $\hat{e}_T = \frac{1}{m} \sum_{i=1}^m I\left(\hat{d}(\boldsymbol{X}_j^t; \mathcal{L}_n) \neq Y_j^t\right)$
- Estimator using "recycled data" (the same data for training and for error calculation) is biased.
- Reduction of bias: division of data into two parts (training & validation). But than we use just a half of information only.
- Cross-validation out of sample L_n we remove just one event j, train classifier, validate on single event j. We repeat n times and get the estimator (an average of all n estimators):

$$\hat{e}_{CV} = \frac{1}{n} \sum_{j=1}^{n} I\left(\hat{d}(\boldsymbol{X}_j; \mathcal{L}_n^{(-j)}) \neq Y_j\right)$$

 We get an estimator, which is unbiased (in limit of huge n), but training is CPU demanding.

Cross-validation

- Intermediate solution *k-fold cross-validation*
- The sample is divided into k subsamples, k-1 of them we use for training, the one for validation. Then the procedure is repeated with other subsamples and the procedure is repeated k tir $\hat{e}_{vCV} = \frac{1}{n} \sum_{i=1}^{v} \sum_{i=1}^{n} I(Z_j \in \tilde{\mathcal{L}}_n^{(i)}) I\left(\hat{d}(X_j; \tilde{\mathcal{L}}_n^{(-i)}) \neq Y_j\right)$
 - Smaller CPU usage comparing to cross-validation.
- Recommended $k \sim 10$.
- Resulting classifier might be in the simplest case an average of all k classifiers (or they might be joined together in another way) .

Cross-validation

- 4-times folding
- Finding a dependence of CV from alpha (medical data)
- We can draw the mean and a standard deviation. In the next plot we draw the dependence for each folding.
- As a result we can estimate an error of the cross-validated classifier.

Model performance

Test Error

K-fold Cross-validation

Performance Metrics

- Partition the original data (randomly) into a training set and a test set. (e.g. 70/30)
- Train a model using the training set and evaluate performance (a single time) on the test set.
- Train & test K models as shown.
- Average the model performance over the K test sets.
- Report crossvalidated metrics.

- Regression: R^2, MSE, RMSE
- Classification: Accuracy, F1, H-measure, Log-loss
- Ranking (Binary Outcome): AUC, Partial AUC

https://www.slideshare.net/0xdata/top-10-data-science-practitioner-pitfalls

M. Wolter

Train vs Test vs Valid

Training Set vs. Validation Set vs. Test Set

> Validation is for Model Tuning

- If you have "enough" data and plan to do some model tuning, you should really partition your data into three parts — Training, Validation and Test sets.
- There is no general rule for how you should partition the data and it will depend on how strong the signal in your data is, but an example could be: 50% Train, 25% Validation and 25% Test

 The validation set is used strictly for model tuning (via validation of models with different parameters) and the test set is used to make a final estimate of the generalization error.

Cross-validation example

https://github.com/marcinwolter/MachineLearnin2019/blob/master/c ross_validation.ipynb

Hyperparameter optimization

- Nearly each ML method has few hyperparameters (structure of the Neural Net, number of trees and their depth for BDT etc).
- They should be optimized for a given problem.
- Task: for a given data sample find a set of hyperparameters, that the estimated error of the given method is minimized.
- Looks like a typical minimization problem (fitting like), but:
 - Getting each measurement is costly
 - High noise
 - We can get the value of the minimized function (so our error) in the pont x of the hyperparameter space, but we can't get the differential easily.

Optimization of hyperparameters

- How to optimize:
 - "Grid search" scan over all possible values of parameters.
 - "Random search"
 - Some type of fitting...
- Popular method is the "bayesian optimization"
 - Build the probability model
 - Take "a priori" distributions of parameters
 - Find, for which point in the hyperparameter space you can maximally improve your model
 - Find the value of error
 - Find the "a posteriori" probability distribution
 - Repeat

How does it work in practice?

Straight line fitting

 $y(x, w) = w_0 + w_1 x$ fit to the data.

- 1) Gaussian prior, no data used
- 2) First data point. We find the likelihood based on this point (left plot) and multiply: priori*likelihood. We get the posterior distribution (right plot).
- 3) We add the second point and repeat the procedure.
- 4) Adding all the points one by one.

Remark: data are noisy.

Illustration of sequential Bayesian learning for a simple linear model of the form $y(x, \mathbf{w}) = w_0 + w_1 x$. A detailed description of this figure is given in the text.

Starting point

Unknown function (with noise), four observations. Where should we do the next costly probing?

https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf

The a posteriori distribution of possible functions, those functions could generate the observed data points.

M. Wolter

A posteriori functions – Gaussian Processes (GP)

These functions should be somehow parametrized, for example they could be Gaussian functions.

Acquisition function

- Posterior GP (Gaussian Processes) give us the mean of GP functions $\mu(x)$ and their expected variation $\sigma^2(x)$.
 - Exploration searching for huge variation
 - **Exploitation** searching for a smallest/greatest (depends on sign and convention) value of mean $\mu(x)$
- The acquisition policy has to balance these two approaches

Where to put the next point?

Our next chosen point(x) should has high mean (exploitation) & high variance (exploration).

We choose next **x**

Dokonujemy próbkowania i powtarzamy procedurę...

M. Wolter

24.01.2020

Limitations

- Bayesian optimization depends on the parameters chosen
- On the acquisition function
- On the prior selected....
- It's sequential.
- There are alternative methods, which can be done in parallel (like Random Search or Tree of Parzen Estimators (TPE) used by the HyperOpt package https://github.com/hyperopt/hyperopt).

Hyperparameter optimization - examples

https://github.com/marcinwolter/MachineLearnin2019/blob/master/cross_valid ation.ipynb

- Simple HYPEROPT example:
- https://github.com/marcinwolter/MachineLearnin2019/blob/master/hyperopt_d emo.ipynb
- Optimization of MNIST hand-written letters recognition using HYPEROPT:
- https://github.com/marcinwolter/MachineLearnin2019/blob/master/mnist_mlp_ minimal_hyperopt.ipynb

Articles

- Brochu, E., Cora, V. M., and De Freitas, N. (2010). A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599.
- Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and de Freitas, N. (2016). Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175.
- Nice tutorial:

https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/ Ryan_adams_140814_bayesopt_ncap.pdf