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● Training - cross-validation.
● Optimization of hyperparameters.
● Cluster analysis
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Supervised training
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Overtraining

Correct

Overtraining

● Overtraining – algorithm “learns” the particular events, not the 
rules.

● This effect appears for all ML algorithms.
● Remedy – checking with another, independent dataset.

test

training

STOP

Example of using Neural 
Network.

Training sample

Test sample

BUT WE USE JUST ONLY A PART OF DATA FOR 

TRAINING!!!
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How to train a ML algorithm?

● How to avoid overtraining while learning?

● Should we use one sample for training and another for validating?

● Then we increase the error – we use just a part of data for training.

● Second remark: to avoid ovetraining and find the performance of the trained 
algorithm we should use one more, third data sample to measure the final 
performance of the ML algorithm.

● How to optimize the hyperparameters of the ML algorithm (number of trees 
and their depth for BDT, number of hidden layers, nodes for Neural Network)?
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Validation
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Cross-validation

● We have independant training sample L
n
 and a test sample T

m
. 

● Error level of the classifier                          built on the training sample L
n
 

● Estimator using "recycled data" (the same data for training and for error 
calculation) is biased.

● Reduction of bias: division of data into two parts (training & validation). But 
than we use just a half of information only.

● Cross-validation – out of sample L
n
 we remove just one event j, train 

classifier, validate on single event j. We repeat n times and get the estimator 
(an average of all n estimators): 

● We get an estimator, which is unbiased (in limit of huge n), but training is CPU 
demanding. 
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Cross-validation

● Intermediate solution – k-fold cross-validation

● The sample is divided into k subsamples, k-1 of them we use for training, the 
one for validation. Then the procedure is repeated with other subsamples and 
the procedure is repeated k times. 

● Smaller CPU usage comparing to cross-validation.

● Recommended k ~ 10 .

● Resulting classifier might be in the simplest case an average of all k 
classifiers (or they might be joined together in another way) .
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Cross-validation

● 4-times folding

● Finding a dependence of CV from alpha (medical data)

● We can draw the mean and a standard deviation. In the next plot we draw the 
dependence for each folding. 

● As a result we can estimate an error of the cross-validated classifier.
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https://www.slideshare.net/0xdata/top-10-data-science-practitioner-pitfalls

Model performance

https://www.slideshare.net/0xdata/top-10-data-science-practitioner-pitfalls
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 Train vs Test vs Valid
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Cross-validation example

https://github.com/marcinwolter/MachineLearnin2019/blob/master/c
ross_validation.ipynb

https://github.com/marcinwolter/MachineLearnin2019/blob/master/cross_validation.ipynb
https://github.com/marcinwolter/MachineLearnin2019/blob/master/cross_validation.ipynb
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Hyperparameter optimization

● Nearly each ML method has few hyperparameters (structure of the Neural 
Net, number of trees and their depth for BDT etc).

● They should be optimized for a given problem.

● Task: for a given data sample find a set of hyperparameters, that the 
estimated error of the given method is minimized.

● Looks like a typical minimization problem (fitting like), but:

– Getting each measurement is costly

– High noise

– We can get the value of the minimized function (so our error) in the pont x 
of the hyperparameter space,  but we can't get the differential easily.
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Optimization of hyperparameters

● How to optimize:

– „Grid search” - scan over all possible values of parameters. 

– „Random search”

– Some type of fitting…
● Popular method is the „bayesian optimization”

– Build the probability model

– Take „a priori” distributions of parameters

– Find, for which point in the hyperparameter space you can maximally 
improve your model

– Find the value of error

– Find the „a posteriori” probability distribution

– Repeat
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How does it work 
in practice?

● Straight line fitting

 y(x, w) = w
0
 + w

1
x   fit to the data.

1) Gaussian prior, no data used

2) First data point. We find the likelihood 
based on this point (left plot) and 
multiply: priori*likelihood. We get the 
posterior distribution (right plot).

3) We add the second point and repeat 
the procedure.

4) Adding all the points one by one.

Remark: data are noisy.
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Starting point

Unknown function (with noise), four observations.
Where should we do the next costly probing?

https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf

We are searching 
for a MAXIMUM

https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf
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A posteriori distribution

The a posteriori distribution of possible functions, those functions could 
generate the observed data points.

A set of 
functions
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A posteriori functions 
– Gaussian Processes (GP)

These functions should be somehow parametrized, for example they could 
be Gaussian functions.
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Acquisition function

● Posterior GP (Gaussian Processes) give us the mean of GP functions μ(x) 
and their expected variation σ2(x).

– Exploration – searching for huge variation

– Exploitation – searching for a smallest/greatest (depends on sign and 
convention) value of mean  μ(x)

● The acquisition policy has to balance these two approaches
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Where to put the next point?

● Our next chosen point( x ) should has high mean (exploitation) & high 
variance (exploration).
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We choose next x 
u(x) – acqusition function 
(finding maximum)
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Dokonujemy próbkowania i powtarzamy procedurę...
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t=2 t=3

t=4 t=5

MAXIMUM
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Limitations

● Bayesian optimization depends on the parameters chosen

● On the acquisition function

● On the prior selected....

● It’s sequential.

● There are alternative methods, which can be done in parallel (like Random 
Search or Tree of Parzen Estimators (TPE) used by the HyperOpt package 
https://github.com/hyperopt/hyperopt).
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Hyperparameter optimization - examples

● https://github.com/marcinwolter/MachineLearnin2019/blob/master/cross_valid
ation.ipynb

● Simple HYPEROPT example:

● https://github.com/marcinwolter/MachineLearnin2019/blob/master/hyperopt_d
emo.ipynb

● Optimization of MNIST hand-written letters recognition using HYPEROPT:

● https://github.com/marcinwolter/MachineLearnin2019/blob/master/mnist_mlp_
minimal_hyperopt.ipynb
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Articles

● Brochu, E., Cora, V. M., and De Freitas, N. (2010). A tutorial on bayesian 
optimization of expensive cost functions, with application to active user 
modeling and hierarchical reinforcement learning. arXiv preprint 
arXiv:1012.2599.

● Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and de Freitas, N. (2016). 
Taking the human out of the loop: A review of bayesian optimization. 
Proceedings of the IEEE, 104(1):148–175.

● Nice tutorial:

https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/
Ryan_adams_140814_bayesopt_ncap.pdf
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