Machine learning
Lecture 7
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* Training - cross-validation.
* Optimization of hyperparameters.
* Cluster analysis
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Overtraining ‘ﬂ?
® Overtraining — algorithm “learns” the particular events, not the
rules.
® This effect appears for all ML algorithms.
® Remedy — checking with another, independent dataset.
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Example of using Neural
Network.
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How to train a ML algorithm?

® How to avoid overtraining while learning?
® Should we use one sample for training and another for validating?

® Then we increase the error — we use just a part of data for training.

® Second remark: to avoid ovetraining and find the performance of the trained
algorithm we should use one more, third data sample to measure the final
performance of the ML algorithm.

® How to optimize the hyperparameters of the ML algorithm (number of trees
and their depth for BDT, number of hidden layers, nodes for Neural Network)?
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Validation
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FIGURE 7.1. Behavior of test sample and training sample error as the model
complexity is varied. The light blue curves show the training error err, while the
light red curves show the conditional test error Erry for 100 training sets of size
50 each, as the model complexity is increased. The solid curves show the expected
test error Err and the expected training error E[ert].

Source: Elements of Slatistical Learning
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Cross-validation

® We have independant training sample L_and a test sample T _.

® Error level of the classifier d(z) = d(z; £,) built on the training sample L_

m

~ 4 _l L. p ot

ér = — ;I (d(xj.z,,,; 4 )J)
j=

® Estimator using "recycled data" (the same data for training and for error

calculation) is biased.

® Reduction of bias: division of data into two parts (training & validation). But
than we use just a half of information only.

® Cross-validation — out of sample L_we remove just one event j, train

classifier, validate on single event j. We repeat n times and get the estimator
(an average of all n estimators):

éoy = l y..1 (J(X_,—:z:',-, 1)) # }'_,)
=1
® \We get an estimator, which is unbiased (in limit of huge n), but training is CPU
demanding.
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Cross-validation

® |ntermediate solution — k-fold cross-validation

® The sample is divided into k subsamples, k-1 of them we use for training, the
one for validation. Then the procedure is repeated with other subsamples and
the procedure is repeated K tir v n

v = %ZZ I(Z; € LN (d(x_,;zf',, Y £ }J)

1=1 =1

® Smaller CPU usage comparing to cross-validation.
® Recommended k ~ 10

® Resulting classifier might be in the simplest case an average of all k
classifiers (or they might be joined together in another way) .
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Cross-validation

® 4-times folding
® Finding a dependence of CV from alpha (medical data)

® \\Ve can draw the mean and a standard deviation. In the next plot we draw the
dependence for each folding.

® As a result we can estimate an error of the cross-validated classifier.
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Model performance

Test Error

K-fold
Cross-validation

Performance
Metrics

Partition the original data (randomly) into a training set
and a test set. (e.g. 70/30)

Train a model using the training set and evaluate
performance (a single time) on the test set.

Train & test K |

models as shown.
Average the model
performance over | :
the K test sets.

Report cross-

validated metrics. | ,. |

TRAIN TEST
A

14

Regression: R"2, MSE, RMSE
Classification: Accuracy, F1, H-measure, Log-loss
Ranking (Binary Outcome): AUC, Partial AUC

https://www.slideshare.net/Oxdata/top-10-data-science-practitioner-pitfalls

24.01.2020

M. Wolter 9


https://www.slideshare.net/0xdata/top-10-data-science-practitioner-pitfalls

Train vs Test vs Valid ‘ﬂ?

Training Set vs.
Validation Set vs.
Test Set

Validation is for
Model Tuning

24.01.2020

If you have “enough” data and plan to do some model
tuning, you should really partition your data into three
parts — Training, Validation and Test sets.

There is no general rule for how you should partition
the data and it will depend on how strong the signal in
your data is, but an example could be: 50% Train,
25% Validation and 25% Test

The validation set is used strictly for model tuning
(via validation of models with different parameters)
and the test set is used to make a final estimate of the
generalization error.
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Cross-validation example

https://github.com/marcinwolter/MachineLearnin2019/blob/master/c
ross_validation.ipynb
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Hyperparameter optimization

® Nearly each ML method has few hyperparameters (structure of the Neural
Net, number of trees and their depth for BDT etc).

® They should be optimized for a given problem.

® Task: for a given data sample find a set of hyperparameters, that the
estimated error of the given method is minimized.

® | ooks like a typical minimization problem (fitting like), but:
— Getting each measurement is costly
— High noise

— We can get the value of the minimized function (so our error) in the pont x
of the hyperparameter space, but we can't get the differential easily.
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Optimization of hyperparameters

® How to optimize:

,Grid search” - scan over all possible values of parameters.
,Random search”
Some type of fitting...

® Popular method is the ,,bayesian optimization”

24.01.2020

Build the probability model
Take ,a priori” distributions of parameters

Find, for which point in the hyperparameter space you can maximally
Improve your model

Find the value of error
Find the ,a posteriori” probability distribution
Repeat

M. Wolter 13



likelihood prior/posterior data space

How does it work
in practice? “ ”

® Straight line fitting 3 0w ! 1 0z |
y(x, w) =w, +w . x fitto the data. " y'
1) Gaussian prior, no data used : f
2) First data point. We find the likelihood -1’ - | p— | s
based on this point (left plot) and - e
multiply: priori*likelihood. We getthe .
posterior distribution (right plot). "’lu U 2
3) We add the second point and repeat
the procedure. o TR 1 K ] . 0 z |
4) Adding all the points one by one. '
Y
0 o
8 O
Remark: data are noisy. _ ] "
wo 1 - ) -1 0 1

lllustration of sequential Bayesian learning for a simple linear model of the form y(z, w) =
wp + wrz. A detailed description of this figure is given in the text.

M. Wolter
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Starting point
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Unknown function (with noise), four observations.
Where should we do the next costly probing?

https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814 bayesopt ncap.pdf
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A set of iE

functions A posteriori distribution
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The a posteriori distribution of possible functions, those functions could
generate the observed data points.
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A posteriori functions ﬂ?
— Gaussian Processes (GP)

Squared-Exponential

These functions should be somehow parametrized, for example they could
be Gaussian functions.

24.01.2020 M. Wolter 17
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Acquisition function

® Posterior GP (Gaussian Processes) give us the mean of GP functions p(x)
and their expected variation a%(x).

— EXploration — searching for huge variation

— Exploitation — searching for a smallest/greatest (depends on sign and
convention) value of mean u(x)
® The acquisition policy has to balance these two approaches

24.01.2020 M. Wolter 18
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Where to put the next point?

® QOur next chosen point( x ) should has high mean (exploitation) & high
variance (exploration).
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We choose next x

u(x) — acqusition function
(finding maximum)
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Dokonujemy probkowania i powtarzamy procedure...
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fix)

1.5

x, =0.1000

1.0

-1.0}

—1.5

- = True (unknown)
® ® Observations
== ugelr)
—_ u{x)

Cl

-2.0

1.5

-1.5

-1.0

=05

0.0

x,” = (0.1000

0.5

1.0 1.5 2.0

1.0}

=10}

-15

= - True (unknown)
® ® Observations

== ugp(x)
—  ufx)
Cl

2.0

-1.5

24.01.2020

-1.0

=0.5

0.0

0.5

1.0 15

2.0

fix)

fix)

1.5

1.0

0.5

0.0

-0.5

-1.0}

-15

x" =0.1000

== True (unknown)
@ ® Observations
== ugpelr)

. — u(x)

* Cl

-2.0

1.5

-1.5

-1.0

0.0

0.5 1.0 15 2.0

MAXIMUM

1.0

-1.0}

-1.5

= = True (unknown)
® ® Observations

== pge(z)
— u(x)
Cl

-2.0

M. Wolter

=10

-0.5

0.0

0.5

1.0

1.5 2.0




Limitations

® Bayesian optimization depends on the parameters chosen
® On the acquisition function

® On the prior selected....

® |t's sequential.

® There are alternative methods, which can be done in parallel (like Random
Search or Tree of Parzen Estimators (TPE) used by the HyperOpt package
https://github.com/hyperopt/hyperopt).
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Hyperparameter optimization - examples

® https://github.com/marcinwolter/MachinelLearnin2019/blob/master/cross_valid
ation.ipynb

® Simple HYPEROPT example:

® https://github.com/marcinwolter/MachinelLearnin2019/blob/master/hyperopt_d
emo.ipynb

® Optimization of MNIST hand-written letters recognition using HYPEROPT:

® https://github.com/marcinwolter/MachineLearnin2019/blob/master/mnist._mlp
minimal_hyperopt.ipynb

24.01.2020 M. Wolter 26
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Articles

® Brochu, E., Cora, V. M., and De Freitas, N. (2010). A tutorial on bayesian
optimization of expensive cost functions, with application to active user
modeling and hierarchical reinforcement learning. arXiv preprint
arXiv:1012.25909.

® Shabhriari, B., Swersky, K., Wang, Z., Adams, R. P., and de Freitas, N. (2016).
Taking the human out of the loop: A review of bayesian optimization.
Proceedings of the IEEE, 104(1):148-175.

® Nice tutorial;

https://www.iro.umontreal.ca/~bengioy/cifar/INCAP2014-summerschool/slides/
Ryan_adams_ 140814 bayesopt ncap.pdf

24.01.2020 M. Wolter 27




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

