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Machine Learning and Deep Learning

® Traditional ML (BDT, NN etc) — the scientist finds good, well discriminating
variables (~10), called “features”, and performs classification using them as
inputs for the ML algorithm.

® Deep Learning — thousands or millions of input variables (like pixels of
a photo), the features are automagically extracted during training.
Machine Learning
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A tutorial - how to designh a Keras DNN

® Task — build a simple network to recognize hand-written digits:
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60000 train samples
10000 test samples
Model: "sequential_3"

Layer e O P e kel
dense_o (Dense)  (None, 512) 401920
dropout_7 (Dropout) (None, 512) 0

dense_10 (Dense) (None, 512) 262656
dropout_8 (Dropout) (None, 512) 0

dense_11 (Dense) (None, 512) 262656
dropout_9 (Dropout) (None, 512) 0

dense_12 (Dense) (None, 10) 5130

Total params: 932,362
Trainable params: 932,362
Non-trainable params: 0
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The first step is to define the functions and classes we intend to use in this
tutorial. We will use the NumPy library to load our dataset and we will use two
classes from the Keras library to define our model.

Init

The imports required are listed below.

import matplotlib.pyplot as plt # matplotlib plotting
import numpy as np

import keras

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense, Dropout
from keras.optimizers import RMSprop, Adam
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https://www.numpy.org/
https://keras.io/

Load Data

We can now load our dataset:

# the data, split between train and test sets
(x_train, y train), (x test, y test) = mnist.load data()

MNIST database of handwritten digits

Dataset of 60,000 28x28 grayscale images of the 10 digits, along with a test set of 10,000
images.
Usage:

from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load data()

Returns:
2 tuples:
X_train, x_test: uint8 array of grayscale image data with shape (num_samples, 28,
28).
y train, y_test: uint8 array of digit labels (integers in range 0-9) with shape
(num_samples,).
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MNIST dataset

6 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0

784 numbers

We make now a numpy array of shape (6000, 784) out of a python tuple

# reshape dataset
X _train = x train.reshape (60000, 784)
X _test = x _test.reshape(10000, 784)

# convert to float32
X _train = x train.astype('float32")
X test = x test.astype('float32"')

#normalize to one

X _train /= 255
X test /= 255
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Prepare data ﬂ?
convert to categorical

We want to use NN with 10 outputs (each corresponding to one digit) to get a
probability for each digit. So we convert the y _train from a single number to
vector:
0, 00000010
*0-(, 0,0,0,0,0,0,0,0)
0, 00000001

print(x train.shape[0], 'train samples')
print(x test.shape[0], 'test samples')

num classes = 10

# convert class vectors to binary class matrices

y train = keras.utils.to categorical(y train, num classes)
y test = keras.utils.to categorical(y test, num classes)
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Define Keras Model

Models in Keras are defined as a sequence of layers.

We create a Sequential model and add layers one at a time until we are happy
with our network architecture.

The first thing to get right is to ensure the input layer has the right number of
input features. This can be specified when creating the first layer with 512
nodes and with the input_dim argument and setting it to 784 for the 784 input
variables.

model = Sequential()
model.add(Dense(512, activation='relu', input shape=(784,)))

Sigmoid r Leahj[,_r IlieLlil

P | max(0. Ly,

ME) = == _,J'Il 5

tanh X |'F e Maxout

tanhiz) | mak(u] = + by, w] = + by)
The activation function is relu (Rectified Linear): RelU /ﬁ fuj | ;f/

max(0, ) |:|||" i . :: —
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Define Keras Model

Adding next layers. How do we know the number of layers and their types?

This is a very hard question. There are heuristics that we can use and often the best
network structure is found through a process of trial and error experimentation. Generally,
you need a network large enough to capture the structure of the problem.

In this example, we will use a fully-connected network structure with three hidden layers.

Fully connected layers are defined using the Dense class. We can specify the number of
neurons or nodes in the layer as the first argument, and specify the activation function using
the activation argument.

We will use the rectified linear unit activation function referred to as ReLU on the first three
layers:

model = Sequential()

model.add(Dense(512, activation='relu', input shape=(784,)))
model.add(Dense(512, activation='relu'))
model.add(Dense(512, activation='relu'))

17.01.2020 M. Wolter 10




ils

Define Keras Model

model = Sequential()

model.add(Dense(512, activation='relu', input shape=(784,)))
model.add(Dropout(0.2))

model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))

model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))

model.add(Dense(num classes, activation='softmax'))

model.summary ()

Adding output layer with num_classes=10 nodes and softmax (see next slide)
activation function. We use a sigmoid on the output layer to ensure our network output
Is between 0 and 1 and easy to map to either a probability of class 1 or snap to a hard
classification of either class with a default threshold of 0.5.

Between the layers we add a Dropout layer to avoid overtraining:

Dropout consists in randomly setting a fraction rate of input units to O at each update
during training time, which helps prevent overfitting.
http://www.jmlir.org/papers/volumel5/srivastaval4a/srivastaval4a.pdf

model.summary() - printthe network structure
17.01.2020 M. Wolter 11



http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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Softmax activation function

Softmax function, a wonderful activation function that turns numbers aka
logits into probabilities that sum to one. Softmax function outputs a vector
that represents the probability distributions of a list of potential outcomes. It's
also a core element used in deep learning classification tasks.

LOGITS
SCORES SOFTMAX PROBABILITIES

2.0 =t

i x 224 x 64

Softmax gives a probability distribution of the
label candidates also known as a list of classes.
b x 112 x 128 It is usually the last layer in a classification task.

M\ 56 :|<56><256 7x7 x 512

|28 x 28 x 512

/(P : Wlﬂ%  1x1x4096 1( 1 x 1000
/ - .

4 , =) convolution+RelU
) max pooling

fully nected+RelU
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Train the network

model.compile(loss='categorical crossentropy’,
optimizer=RMSprop(),
metrics=["'accuracy'])

When compiling, we must specify some additional properties required when training the
network. Training a network means finding the best set of weights to map inputs to outputs
in our dataset.

We must specify the loss function to use to evaluate a set of weights, the optimizer is used
to search through different weights for the network and any optional metrics we would like to
collect and report during training.

This loss is for a categorical classification problems and is defined in Keras as
“categorical_crossentropy”. You can learn more about choosing loss functions based on
your problem here:

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learn
iIng-neural-networks/

We will define the optimizer as the efficient stochastic gradient descent algorithm
“RMSprop“. We could also use “adam”, which is a popular version of gradient descent
because it automatically tunes itself and gives good results in a wide range of problems.
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https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

Fit Keras Model

batch size = 128
epochs = 10

history = model.fit(x train, y train,
batch size=batch size,
epochs=epochs,
verbose=1,
validation data=(x test, y test))

We can train or fit our model on our loaded data by calling the fit() function on the model.
Training occurs over epochs and each epoch is split into batches.

Epoch: One pass through all of the rows in the training dataset.

Batch: One or more samples considered by the model within an epoch before weights are
updated.
One epoch is comprised of one or more batches, based on the chosen batch size and the
model is fit for many epochs.
For this problem, we will run for a small number of epochs (10) and use a batch size of 128.

These configurations can be chosen experimentally by trial and error. We want to train the
model enough so that it learns a good (or good enough) mapping of rows of input data to the
output classification. The model will always have some error, but the amount of error will level
out after some point for a given model configuration. This is called model convergence.

17.01.2020 M. Wolter 14
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Evaluate Keras Model

score = model.evaluate(x test, y test, verbose=0)
print('Test accuracy:', score[l])

We have trained our neural network on the entire dataset and we can evaluate
the performance of the network on another “test” dataset.

You can evaluate your model on a dataset using the evaluate() function.

This will generate a prediction for each input and output pair and collect scores,
Including the average loss and any metrics you have configured, such as
accuracy.

The evaluate() function will return a list with two values. The first will be the loss
of the model on the dataset and the second will be the accuracy of the model
on the dataset.

17.01.2020 M. Wolter 15
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Tie It All Together

htbtps://github.Com/marcinwolter/l\/lachineLearnin2019/b|ob/master/mnist_mlp_minimal.ipy
n

Model: "sequential_2"

Layer (type) Output Shape Param #

dense_5 (Dense) (None,512) 401920
dropout_4 (Dropout) (None, 512) 0

dense_6 (Dense) (None, 512) 262656

dropout_5 (Dropout) (None, 512) 0

dense_7 (Dense) (None, 512) 262656

dropout_6 (Dropout) (None, 512) 0

dense_8 (Dense) (None, 10) 5130

Total params: 932,362
Trainable params: 932,362
Non-trainable params: O
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https://github.com/marcinwolter/MachineLearnin2019/blob/master/mnist_mlp_minimal.ipynb
https://github.com/marcinwolter/MachineLearnin2019/blob/master/mnist_mlp_minimal.ipynb
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— frain
— validation

Mum of Epochs

Program with more features

Training Loss vs Validation Loss

® https://github.com/marcinwolter/MachinelLearni
pynb

® Plotting the Neural Network structure

® \/isualization of results

0.25
0.20
g 015
0.10
0.05
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https://github.com/marcinwolter/MachineLearnin2019/blob/master/mnist_mlp.ipynb
https://github.com/marcinwolter/MachineLearnin2019/blob/master/mnist_mlp.ipynb
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Deep Neural Network

Input Layer

works like that...

Deep Neural Metwork
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Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

edges combinations of edges
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Output Layer

object models




Convolutional NN
Pattern recognition

Example: 1000x1000 image
IM hidden units
‘ 1B parametersl!!

Many connections... How to simplify
the deep neural network?

17.01.2020 M. Wolter 19
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Convolutional NN

......

Example: 1000x1000 image

IM hidden units

Filter size: 10x10
10M parameters

Just connect only local areas, for
example 10x10 pixels.
Huge reduction of the number of

: ! ar-n multiple filters. pa rameters '

A § ~ The same features might be found in
different places => so we could train
B9:1000d000 mege  many filters, each recognizing another

Filtersize: 1010 feature, and move them over the
10K parameters DiCture.

LeCun et al. “Gradient-based learning applied to document recognition” IEEE 1998

17.01.2020 M. Wolter
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Pooling

Pooling - (in most cases max
pooling) the group of outputs for
a larger input area is replaced by a
maximum (or average) for this
given area:

eData reduction,

eLower sensitivity for the position
of a given feature.

Single depth slice
1 o 2 3

/I

4 6 6 8
3 1 1 0 3
1 2 2 4

W
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Architecture of Alex Krizhevsky et al.

Softmax Output
e 8 layers total.

ot Oubut
e Trained on Imagenet Dataset
(1000 categories, 1.2M
Lo o P

3

training images, 150k test

Layer 5: Conv + Pool

images)
o 18.2% top-5 error Layer 4: Conv
o Winner of the ILSVRC-
2012 challenge. =

Layer 2: Conv + Pool

Layer 1: Conv + Pool

Slide: R.

Input Image
P g Fergus
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First layer filters

Showing 81 filters of
11x11x3.

Capture low-level
features like oriented
edges, blobs.

Note these oriented edges are
analogous to what SIFT uses to
compute the gradients.

SIFT - scale-invariant feature
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Top 9 patches that activate each filter
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Few properties of Deep Neural Networks

96.5 | I T | 1 | |
96.0

95.5
95.0
94.5
94.0
93.5
93.0

Test accuracy (percent)

92.5

|
! D § 7 8 9 10 11
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Figure 6.6: Empirical results showing that deeper networks generalize better when used
to transcribe multi-digit numbers from photographs of addresses. Data from Goodfellow
ot al. (2014d). The test set accuracy consistently increases with increasing depth. See
figure 6.7 for a control experiment demonstrating that other increases to the model size
do not yield the same effect.

http://www.deeplearningbook.org

M. Wolter
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Figure 6.7: Deeper models tend to perform better. This is not merely because the model is
larger. This experiment from Goodfellow ¢f al. (2014d) shows that increasing the number
of parameters in layers of convolutional networks without increasing their depth is not
nearly as effective at increasing test set performance. The legend indicates the depth of
network used to make each curve and whether the curve represents variation in the size of
the convolutional or the fully connected layers. We observe that shallow models in this
context overfit at around 20 million parameters while deep ones can benefit from having
over 60 million. This suggests that using a deep model expresses a useful preference over
the space of functions the model can learn. Specifically, it expresses a belief that the
function should consist of many simpler functions composed together. This could result
either in learning a representation that is composed in turn of simpler representations (e.g.,
corners defined in terms of edges) or in learning a program with sequentially dependent
steps (e.g., first locate a set of objects, then segment them from each other, then recognize

them). http://www.deeplearningbook.org
M. Wolter
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0.0160

Test accuracy: 0.9959

Test loss:
arnin2019/blob/master/mnist cnn.i

CNN Example
https://github.com/marcinwolter/MachinelLe

® Gets much, much better results! Think why?
pynb

® Back to our digits recognition with CNN...
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https://github.com/marcinwolter/MachineLearnin2019/blob/master/mnist_cnn.ipynb
https://github.com/marcinwolter/MachineLearnin2019/blob/master/mnist_cnn.ipynb
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A Deep Neural Network Applet

Applet showing the performance of deep NN:

http://cs.stanford.edu/people/karpathy/convnetjs/

10.01.2020 M. Wolter 32



http://cs.stanford.edu/people/karpathy/convnetjs/

An example - pattern recognition with ‘ﬂ?
KERAS and TensorFlow

® CIFAR10 small image classification. Dataset of 50,000 32x32 color training
images, labeled over 10 categories, and 10,000 test images.

Figure 1 - O X

airplane automobile bird

A€ Q=B

https://github.com/marcinwolter/DNN__examples/blob/master/cifar_classifier_gpu_aug.ipynb
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https://github.com/marcinwolter/DNN_examples/blob/master/cifar_classifier_gpu_aug.ipynb
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Deep Neural Network

Total params: 1,250,858
Trainable params: 1,250,858
Non-trainable params: 0

OPERATION DATA DIMENSIONS  WEIGHTS(N) WEIGHTS (%)
Input  ##### 3 32 32
Conv2D \|/ - 896 0.0%
relu  ##### 32 32 32
Conv2D \|/ - 9248 0.0%
relu  ##### 32 30 30
MaxPooling2D Y max ------------------- 0 0.0%
HH#### 32 15 15
Dropout | || ------------------- 0 0.0%
HH###H# 32 15 15
Conv2D \|/ - 18496 1.0%
relu  ##### 64 15 15
Conv2D \|/ =--memmeeee e 36928 2.0%
relu  ##### 64 13 13
MaxPooling2D Y max ------------------- 0 0.0%
TR 64 6 6
Dropout | || =====---ccmmmeeea- 0 0.0%
THHHT 64 6 6
Flatten 1] ------------=-=---- 0 0.0%
HH##H#H 2304
Dense  XXXXX -------mmmmmmannn 1180160 94.0%
relu  ##### 512
Dropout | || ------=-----c----- 0 0.0%
A 512
Dense  XXXXX -------mmmmmmmanon 5130 0.0%
softmax #HHHY 10
Train on 50000 samples, validate on 10000 samples

10.01.2020 M. Wolter 34




Results ‘ﬂ?

Recognized as Really was

o

ship ship airplane ship frog frog frog frog automobile automobile frog frog truck automobile
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Summary

Can you designh a Deep Neural Network in Keras?

10.01.2020 M. Wolter 36




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

