
17.01.2020 1M. Wolter

Machine learning
Lecture 6

Marcin Wolter

IFJ PAN

17 January 2020

● How to build a Deep Neural Networks –
Keras tutorial

● Convolutional Deep Neural Network

17.01.2020 2M. Wolter

Machine Learning and Deep Learning

● Traditional ML (BDT, NN etc) – the scientist finds good, well discriminating
variables (~10), called “features”, and performs classification using them as
inputs for the ML algorithm.

● Deep Learning – thousands or millions of input variables (like pixels of
a photo), the features are automagically extracted during training.

17.01.2020 3M. Wolter

17.01.2020 4M. Wolter

A tutorial – how to design a Keras DNN
● Task – build a simple network to recognize hand-written digits:

60000 train samples
10000 test samples
Model: "sequential_3"

Layer (type) Output Shape Param #
===
==================
dense_9 (Dense) (None, 512) 401920

dropout_7 (Dropout) (None, 512) 0

dense_10 (Dense) (None, 512) 262656

dropout_8 (Dropout) (None, 512) 0

dense_11 (Dense) (None, 512) 262656

dropout_9 (Dropout) (None, 512) 0

dense_12 (Dense) (None, 10) 5130
===
==================
Total params: 932,362
Trainable params: 932,362
Non-trainable params: 0

28 x 28 pixels

17.01.2020 5M. Wolter

Init
The first step is to define the functions and classes we intend to use in this
tutorial. We will use the NumPy library to load our dataset and we will use two
classes from the Keras library to define our model.

The imports required are listed below.

import matplotlib.pyplot as plt # matplotlib plotting
import numpy as np

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import RMSprop, Adam

https://www.numpy.org/
https://keras.io/

17.01.2020 6M. Wolter

Load Data
We can now load our dataset:

the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

MNIST database of handwritten digits

Dataset of 60,000 28x28 grayscale images of the 10 digits, along with a test set of 10,000
images.
Usage:

from keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

 Returns:
 2 tuples:
 x_train, x_test: uint8 array of grayscale image data with shape (num_samples, 28,
28).
 y_train, y_test: uint8 array of digit labels (integers in range 0-9) with shape
(num_samples,).

17.01.2020 7M. Wolter

MNIST dataset
6 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0

784 numbers

reshape dataset
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)

convert to float32
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')

#normalize to one
x_train /= 255
x_test /= 255

We make now a numpy array of shape (6000, 784) out of a python tuple

17.01.2020 8M. Wolter

Prepare data
convert to categorical

print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

num_classes = 10
convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

We want to use NN with 10 outputs (each corresponding to one digit) to get a
probability for each digit. So we convert the y_train from a single number to
vector:
● 7 → (0, 0, 0, 0, 0, 0, 0, 1, 0)
● 0 → (1, 0, 0, 0, 0, 0, 0, 0, 0)
● 9 → (0, 0, 0, 0, 0, 0, 0, 0, 1)

17.01.2020 9M. Wolter

Define Keras Model

Models in Keras are defined as a sequence of layers.

We create a Sequential model and add layers one at a time until we are happy
with our network architecture.

The first thing to get right is to ensure the input layer has the right number of
input features. This can be specified when creating the first layer with 512
nodes and with the input_dim argument and setting it to 784 for the 784 input
variables.

model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,)))

The activation function is relu (Rectified Linear):

17.01.2020 10M. Wolter

Define Keras Model
Adding next layers. How do we know the number of layers and their types?

This is a very hard question. There are heuristics that we can use and often the best
network structure is found through a process of trial and error experimentation. Generally,
you need a network large enough to capture the structure of the problem.

In this example, we will use a fully-connected network structure with three hidden layers.

Fully connected layers are defined using the Dense class. We can specify the number of
neurons or nodes in the layer as the first argument, and specify the activation function using
the activation argument.

We will use the rectified linear unit activation function referred to as ReLU on the first three
layers:

model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,)))
model.add(Dense(512, activation='relu'))
model.add(Dense(512, activation='relu'))

17.01.2020 11M. Wolter

Define Keras Model

model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,)))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(num_classes, activation='softmax'))

model.summary()

Adding output layer with num_classes=10 nodes and softmax (see next slide)
activation function. We use a sigmoid on the output layer to ensure our network output
is between 0 and 1 and easy to map to either a probability of class 1 or snap to a hard
classification of either class with a default threshold of 0.5.

Between the layers we add a Dropout layer to avoid overtraining:
Dropout consists in randomly setting a fraction rate of input units to 0 at each update
during training time, which helps prevent overfitting.
http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

model.summary() - print the network structure

http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

17.01.2020 12M. Wolter

Softmax activation function

Softmax function, a wonderful activation function that turns numbers aka
logits into probabilities that sum to one. Softmax function outputs a vector
that represents the probability distributions of a list of potential outcomes. It’s
also a core element used in deep learning classification tasks.

17.01.2020 13M. Wolter

Train the network
model.compile(loss='categorical_crossentropy',
 optimizer=RMSprop(),
 metrics=['accuracy'])

When compiling, we must specify some additional properties required when training the
network. Training a network means finding the best set of weights to map inputs to outputs
in our dataset.
We must specify the loss function to use to evaluate a set of weights, the optimizer is used
to search through different weights for the network and any optional metrics we would like to
collect and report during training.

This loss is for a categorical classification problems and is defined in Keras as
“categorical_crossentropy“. You can learn more about choosing loss functions based on
your problem here:
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learn
ing-neural-networks/

We will define the optimizer as the efficient stochastic gradient descent algorithm
“RMSprop“. We could also use “adam”, which is a popular version of gradient descent
because it automatically tunes itself and gives good results in a wide range of problems.

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

17.01.2020 14M. Wolter

Fit Keras Model
batch_size = 128
epochs = 10

history = model.fit(x_train, y_train,
 batch_size=batch_size,
 epochs=epochs,
 verbose=1,
 validation_data=(x_test, y_test))

We can train or fit our model on our loaded data by calling the fit() function on the model.
Training occurs over epochs and each epoch is split into batches.

 Epoch: One pass through all of the rows in the training dataset.
 Batch: One or more samples considered by the model within an epoch before weights are
updated.
One epoch is comprised of one or more batches, based on the chosen batch size and the
model is fit for many epochs.
For this problem, we will run for a small number of epochs (10) and use a batch size of 128.

These configurations can be chosen experimentally by trial and error. We want to train the
model enough so that it learns a good (or good enough) mapping of rows of input data to the
output classification. The model will always have some error, but the amount of error will level
out after some point for a given model configuration. This is called model convergence.

17.01.2020 15M. Wolter

Evaluate Keras Model

score = model.evaluate(x_test, y_test, verbose=0)
print('Test accuracy:', score[1])

We have trained our neural network on the entire dataset and we can evaluate
the performance of the network on another “test” dataset.
You can evaluate your model on a dataset using the evaluate() function.
This will generate a prediction for each input and output pair and collect scores,
including the average loss and any metrics you have configured, such as
accuracy.
The evaluate() function will return a list with two values. The first will be the loss
of the model on the dataset and the second will be the accuracy of the model
on the dataset.

17.01.2020 16M. Wolter

Tie It All Together
https://github.com/marcinwolter/MachineLearnin2019/blob/master/mnist_mlp_minimal.ipy
nb

Model: "sequential_2"

Layer (type) Output Shape Param #
===
dense_5 (Dense) (None, 512) 401920

dropout_4 (Dropout) (None, 512) 0

dense_6 (Dense) (None, 512) 262656

dropout_5 (Dropout) (None, 512) 0

dense_7 (Dense) (None, 512) 262656

dropout_6 (Dropout) (None, 512) 0

dense_8 (Dense) (None, 10) 5130
===
Total params: 932,362
Trainable params: 932,362
Non-trainable params: 0

https://github.com/marcinwolter/MachineLearnin2019/blob/master/mnist_mlp_minimal.ipynb
https://github.com/marcinwolter/MachineLearnin2019/blob/master/mnist_mlp_minimal.ipynb

17.01.2020 17M. Wolter

Program with more features

● https://github.com/marcinwolter/MachineLearnin2019/blob/master/mnist_mlp.i
pynb

● Visualization of results

● Plotting the Neural Network structure

https://github.com/marcinwolter/MachineLearnin2019/blob/master/mnist_mlp.ipynb
https://github.com/marcinwolter/MachineLearnin2019/blob/master/mnist_mlp.ipynb

17.01.2020 18M. Wolter

Deep Neural Network
works like that...

17.01.2020 19M. Wolter

Convolutional NN
Pattern recognition

Many connections… How to simplify
the deep neural network?

17.01.2020 20M. Wolter

Convolutional NN

Just connect only local areas, for
example 10x10 pixels.
Huge reduction of the number of
parameters!

The same features might be found in
different places => so we could train
many filters, each recognizing another
feature, and move them over the
picture.

17.01.2020 21M. Wolter

Pooling

Pooling – (in most cases max
pooling) the group of outputs for
a larger input area is replaced by a
maximum (or average) for this
given area:
•Data reduction,
•Lower sensitivity for the position
of a given feature.

17.01.2020 22M. Wolter

17.01.2020 23M. Wolter

SIFT - scale-invariant feature
transform, algorithm published in
1999 roku by David Lowe.

17.01.2020 24M. Wolter

17.01.2020 25M. Wolter

17.01.2020 26M. Wolter

17.01.2020 27M. Wolter

17.01.2020 28M. Wolter

17.01.2020 29M. Wolter

Few properties of Deep Neural Networks

http://www.deeplearningbook.org

17.01.2020 30M. Wolter

http://www.deeplearningbook.org

17.01.2020 31M. Wolter

CNN Example

● Back to our digits recognition with CNN…

● Gets much, much better results! Think why?

https://github.com/marcinwolter/MachineLearnin2019/blob/master/mnist_cnn.i
pynb

Test loss: 0.0160
Test accuracy: 0.9959

https://github.com/marcinwolter/MachineLearnin2019/blob/master/mnist_cnn.ipynb
https://github.com/marcinwolter/MachineLearnin2019/blob/master/mnist_cnn.ipynb

10.01.2020 32M. Wolter

Applet showing the performance of deep NN:

http://cs.stanford.edu/people/karpathy/convnetjs/

A Deep Neural Network Applet

http://cs.stanford.edu/people/karpathy/convnetjs/

10.01.2020 33M. Wolter

An example – pattern recognition with
KERAS and TensorFlow

● CIFAR10 small image classification. Dataset of 50,000 32x32 color training
images, labeled over 10 categories, and 10,000 test images.

https://github.com/marcinwolter/DNN_examples/blob/master/cifar_classifier_gpu_aug.ipynb

https://github.com/marcinwolter/DNN_examples/blob/master/cifar_classifier_gpu_aug.ipynb

10.01.2020 34M. Wolter

Deep Neural Network

10.01.2020 35M. Wolter

Results
Recognized as Really was

10.01.2020 36M. Wolter

Summary

Can you design a Deep Neural Network in Keras?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

