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Generalized detection of cosmic rays
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Classes of cosmic-ray ensembles
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Cosmic-ray ensembles: road map

Theoretical scenarios (ongoing)
non-exotic / exotic v

|

CRE standalone simulations — particle distributions

at the top of the atmosphere (ongoing) v
|

Air shower simulations (ongoing) V4
|

Detector response (ongoing) v

|

Observation / upper limits



Example exotic scenario: Lorentz invariance violation

* Kk endows the vacuum with an effective index of refraction,

leading to a modification of the photon dispersion relation
1 1 —k
w(g) = =\ T,
* This modification allows for processes which are kinematically
forbidden in the conventional Lorentz-invariant theory

* Kk >0:vacuum Cherenkov radiation possible above a threshold E, (k)

f—=1+7

efficient energy loss mechanism for charged particles, current constraints
[Klinkhamer & Risse 2008]

(k<6x1020 at 98 % ' tions of UHECRS [kiinkhamer & schreck 2008]

: photon becomes unstable above a threshold wy, (k)

ALL UHE photons

¥—et +e”
Initiate CRE!!!

decay length is very small, current constraints (k>-9x101°at 98% C.L.)
ived from gamma-ray astronomy inkhamer & schreck 2008

F.R. Klinkhamer, M. Niechciol, M. Risse. arXiv:1710.02507



A phenomenon in CREDO’s reach: Super-Preshower

Preshower:
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Npart at the top of the Earth’s atmosphere >> 100.



Simulation of SPS at vicinity of the Sun

« Development of SPS at Sun’s vicinity is analogous to the development of
preshower in geomagnetic field. Solar magnetic field is responsible for SPS
production.

« When a UHE photon heading towards Earth traverses through region close to
Sun, pair production and synchrotron emission from electron/positron created
thereof will produce a cascade comprising of a large number of photons and a
few electrons/positrons.

« Simulation of UHE photon propagation and SPS development at the Sun’s
vicinity is performed using modified PRESHOWER? code. Currently, only the

first conversion is taken into account.

'Homola et al. 2005, Comput. Phys. Commun.



Simulation of SPS at vicinity of the Sun

Modifications:

« First studies were performed using magnetic field of the Sun modelled as dipole field!
with Magnetic moment of Sun Mg = 6.87 x 1032 G - cm?3(good for sanity check!).

 Dipole - quadrupole - current sheet (DQCS)? model replaces it now (more realistic

than the dipole model even at larger distances from the Sun).
7/\/% \/T

Dipole model DQCS model

W. Bednarek 1999, arXiv:astro-ph/9911266
2Banaszkiewicz et al. 1998, A&A



Simulation of SPS at vicinity of the Sun

Modifications:
« Tracking of particle motion (position and time) in solar magnetic field

« Emission angles for synchrotron photons:
0 =m,J/E

= larger deflections for smaller energies

emission angle of synchrotron photons

Results from the simulation: position, energy, direction and arrival time of

particles at the top of the Earth’s atmosphere.



Simulation of SPS at vicinity of the Sun

Example 1: Magnetic moment of the Sun is along its rotation axis. Primary
photon heading towards Earth travels in the Sun’s equatorial plane.
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Simulation of SPS at vicinity of the Sun
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Simulation of SPS at vicinity of the Sun

Example 2: Magnetic moment of the Sun is along its rotation axis. Primary
photon heading towards Earth passes through the Sun’s “mid-latitude” side.
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Simulation of SPS at vicinity of the Sun

Typical energy distribution of photons at the top of the Earth’s atmosphere.
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Cross-checks of the calculation:
energy conservation and energy-spectrum of synchrotron photons



Simulation of SPS at vicinity of the Sun

Typical particle distribution at the ground from CORSIKA simulation of SPS.
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Sun SPS summary and outlook

Necessary modifications have been made in PRESHOWER code to simulate
development of super-preshowers (SPSs) originating from UHE photons passing
through the vicinity of the Sun. A peculiar signature of a shower produced by such
SPS is a very elongated footprint at the ground transverse to the shower
direction.

CREDO should be in principle suitable for the detection of phenomena like these,
thanks to the extended secondary particle distribution at the ground.

Estimation of Sun-SPS rate expected in different scenarios of UHE photon
production (e.g. super heavy dark matter decay/annihilation, topological defects,
etc.) and testing / constraining the models might be possible.

An alternative method for photon search / limit based on SPS seems to be

feasible.

*N. Dhital et al. [https://arxiv.org/abs/1811.10334v2]



sim.add(PropagationCK(B,1e-4, Lmin, Lmax))

ObserverLargeSphere(Vector3d(x0,y0,z0),D)
source = Source()
source.add(SourceParticleType(11))
source.add(SourceEnergy(E_0))

source.add(SourcePosition(Vector3d(x0,y0,z0)))
source.add(SourceDirection(Vector3d(x1,y1,z1)))

sim.add( MinimumEnergy( E_cut) )

synch = SynchrotronRadiation(B, True)
synch.setSecondaryThreshold(E_synch)

sim.run(source, 1)

Setup




Average number of product particles per 1 run

Extragalactic magnetic field. Photon CRE size

E_0=100 EeV, E_cut=1 TeV
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EGMF. Minimal spread of product particles
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Toy model (uniform 3 uG field)

Min spread of the product particles, D=20 kpc; 6 orders Min spread of the product particles, D=200 kpc; 6 orders
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Uniform field. Number of particles on “toy Earth”

Multiplicity, D=20 kpc; 6 orders
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Toy model 2. Galactic magnetic field (JF12)

CRE footprint on a “toy Earth”

Min spread of product photons in the GMF; D=20 kpc; 6 orders
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Galactic magnetic field (JF12)

Coordinates dependent CRE size
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Galactic magnetic field (JF12)

CRE footprint on a “toy Earth”

1 EeV electron injected at (20*kpc,-120,0) towards the Solar system
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Galactic center as a source?

a) 1 PeV electron b) 10 PeV electron c) 100 PeV electron



CRE scheme

Outlook

1.

2.

3.

What’s next?
Step-by-step simulation control
Specific astrophysical conditions

Targeted search?



