
Let us consider a more general problem, viz, all spacetime foam models
characterized by a (numerical) parameter α (which, for the holographic foam
model. equals 2/3):

δl ∼ l(lP /l)
α and δt ∼ t(tP /t)

α,
where lP and tP are respectively the Planck length (∼ 10−33 cm) and the

Planck time. (Notations: “∼” means equal, order-of-magnitudewise.) I will have
to bring in the so-called correction factor (coming from the need for “proper av-
eraging”) [Reference: arXiv:gr/qc/0305019, especially sections 4 & 5].

Consider two beams of light, with energy E1 and E2 respectively, emitted
simultaneously from a source which is a distance L away from the detector. To
the lowest order of approximation, the two beams travel with a speed c (which
later I will take to be 1 for convenience, ditto for the Planck’s constant) so that
the time it takes for the journey is t = L/v where, again to the lowest order of
approximation, is equal to L/c. The general expression for the fluctuation of t
(valid separately for the two beams of light), δt (which will give rise to a spread
in arrival times), is given by two terms; call them term a and term b.

Term a: δta = (δL)/v ∼ (L1−αlαP )/c = t1−αtαP .
Term b: δtb = (L/v2)δv ∼ (L/c2)c(E/EP )

α. But for this term involving δv,
we need a correction factor (Et)−α , yielding the corrected δtb ∼ t1−αtαP .

Thus, order-of-magnitudewise, the two terms a and b are equal! Hence
we get δt ∼ t1−αtαP which is INdependent of energy! In other words, we have
δt1 ∼ δt2 ∼ t1−αtαP , where t = L/c. Therefore, the two beams of light with

different energies arrive at the detector within ∼ (L/c)1/3t
2/3
P of each other for

α = 2/3 (the holographic spacetime foam model) — which is very small indeed!
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