

Spectator induced electromagnetic effects in ⁴⁰Ar+⁴⁵Sc collisions @ 40 *A* GeV/*c*.

H. Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

Sneha Bhosale in collaboration with Andrzej Rybicki

Outline

- Introduction/Motivation.
- About SHINE.
- Used data set and cuts.
- Results for π^+/π^- ratios.
- Correlations and fluctuations study.
- Summary.

1) Introduction/Motivation

• EM effects influence the emission of π mesons, namely modify the ratio of π^+/π^- .

Charged spectators

(EM field)

- Dependence on p_T.
- Brings information on space-time evolution of system. A.Rybicki and A.Szczurek Phys. Rev. C75, 054903 (2007)

olot by I. Sputow

Evolution from last week:

- arXiv:1910.04544 [nucl-th/hep-ph], V. Ozvenchuk et al.;
- fire-streak model merged with simulation of EM effects;
- good description of π^+/π^- at higher x_F in Pb+Pb collisions ;
- many effects must be taken into account.
- 1. longitudinal evolution of the system;
- 2. pion creation time;
- 3. spectator expansion.

1.0

0.5

0.0

-0.1

0.1

0.0

2) NA61/SHINE

- Main detectors which detects charged particles are five TPCs.
- VTPC-1 VTPC-2 and GTPC are placed in the magnetic fields.
- TPC system allows for particle identification based on specific energy loss and vertex topology.

9

- ToFs are the scintillator detectors measures the arrival time of the particles with precision 60ps.
- Together with TPCs, ToF improves the precision of particle identification.

- Projectile spectator detector is a hadronic calorimeter intended to measure projectile spectators energy in nucleus-nucleus collisions.
- 60 pairs of alternating lead plates and scintillator tiles with 16mm and 4 mm thickness respectively.

3) Used data set and cuts

Data, event and track cuts:

Event cuts:

- Target IN,
- BPD status,
- WFA particles (4 µs),
- WFA interaction (25 μs),
- BPD3X(Y) charge,
- S5 (0 \rightarrow 170),

T4 trigger,

- Vertex track fitted to the main vertex,
- Vertex fit quality = ePerfect,
- Fitted vertex position -580 ± 3 cm,

nTracks > 4,

Auxiliary cuts(geometrical event cuts on nTracks vs PSD plane) will be discussed furthe

- $\circ~$ We have different centrality cuts based on PSD energy selection.
- The PSD modules 1-28 are selected.
- Total number of events after cuts = 496.2 k.

- NA61/SHINE, ⁴⁰Ar + ⁴⁵Sc @ 40 A GeV/c.
- \rightarrow **Production used**: Ar_Sc_40_15/025_17b_v1r6p0_pA_slc6_phys.
- → **Runs**: 21058-21268.
 - Track cuts:
 - Track status,
 - Charge ± 1,
 - Impact point[± 4cm; ± 2cm],
 - Total number of clusters \geq 30,
 - VTPCs clusters \geq 15,
 - No GTPC clusters,
 - dE/dx clusters \geq 30,

Auxiliary cut : nTracks > -0.13534 * E_F + 152.9323

NZ-23 seminar

* E_{F} = foward energy in the PSD.

Centrality definition:

E_{F} = Sum of 1 to 28 PSD modules.

The electromagnetic effect will be most visible in more peripheral collisions!

<u>Main vertex distribution:</u> *red lines shows vertex cut : ± 3 cm (log scale)

Main vertex distribution: *red lines shows vertex cut : ± 3 cm

Main vertex distribution: *red lines shows vertex cut : ± 3 cm

NZ-23 seminar

<u>Trigger bias Study:</u> • $0 < E_F < 660 = 660 < E_F < 840 = 840 < E_F < 980 = 980 < E_F < 1090 = 1090 < E_F < 1260 = 1260 < E_F < 1400$

pT(0.2-1.0) & xF(0.0-0.5)

pT(0.5-1.0) & xF(0.0-0.2)

 $0 < E_{F} < 1400$

4) Results

| vertex_z = vertex_z (target) | < 3cm.

| vertex_z = vertex_z (target) | < 3cm.

<u> $\pi + \pi^{-}$ ratio at six different centralities</u>:

| vertex_z = vertex_z (target) | < 3cm.

Possible biases : BeamCS over DetCS

ratio

1.05

0.95

0.9

0.85

*

*

*

 $0 < E_{r} < 1400$

0.1

What do we know at the present moment about EM effects in Ar+Sc?

- simulations using a simplified model performed by Vitalii (see eg. Acta Phys.Pol. B50 (2019), 311)
- stable, non-decaying spectator does not explain the Ar+Sc data at 150A GeV/c (Mirek)
- the spectator system is higly excited (K.Mazurek, et al. Phys.Rev. C97 (2018) 024604)
- short distance d_E between the fast pion emission zone and the spectator system.

A full database on EM effects in an extended range of centrality in Ar+Sc collisions at 40A GeV/c, down to peripheral reactions, will allow for a full verification of all these statements.

5) Correlations and fluctuations study

Some definitions :

$$\omega(\pi^{+}) = \frac{\operatorname{var}(n_{\pi^{+}})}{\langle n_{\pi^{+}} \rangle} \qquad \omega(\pi^{-}) = \frac{\operatorname{var}(n_{\pi^{-}})}{\langle n_{\pi^{-}} \rangle}$$

$$\mathbf{b}_{corr}(\pi^+,\pi^-) = \frac{\operatorname{cov}(\mathbf{n}_{\pi^+},\mathbf{n}_{\pi^-})}{\sqrt{\operatorname{var}(\mathbf{n}_{\pi^+}).\operatorname{var}(\mathbf{n}_{\pi^-})}}$$

•We want to investigate the **influence of EM** effects;

•Therefore we will study correlations and fluctuations for **multiplicities** of opposite charges : π^+ and π^- ;

•We have to study them in **selected regions** of **phase space** (x_F , p_T) because the influence of EM effects changes with x_F and p_T .

$$\Sigma (\pi^{+}, \pi^{-}) = \frac{1}{n_{\pi^{+}} + n_{\pi^{-}}} [< n_{\pi^{-}} > \omega(\pi^{+}) + \omega(\pi^{-}) < n_{\pi^{+}} > -2cov(n_{\pi^{+}}n_{\pi^{-}})]$$

Where $C = n_{N} - n_{P}$

Δ (π ⁺, π ⁻) =
$$\frac{1}{C}$$
 [π>ω(π⁺) - ω(π⁻)π>]

* Results from now are for $\Phi = \pm 50^{\circ}$, DetCS and vertexZ = ± 10 cm

Centrality definition:

Why we do this?

As we know we have the issue of volume fluctuations so we reduce the ranges in centrality in order to reduce these fluctuations.

I. Sputowska [ALICE Collaboration], MDPI Proc.10, no. 1, 14 (2019).

Results for Ar+Sc collisions:

* $0.05 < X_{F} < 0.125$: No EM region

Results for Ar+Sc collisions:

* $0.05 < X_{F} < 0.125$: No EM region $0.125 < X_{F} < 0.325$: EM region 0 < pT < 2 GeV/c, for $\pm 5\%$ dEdx cut 0.35 2 times smaller 0.05< X_r < 0.125 0.05< X_F< 0.125 centrality bins 0.125 < X_r< 0.325 0.125 < X_F< 0.325 $\overline{}$ 0.3 エ 0.05 < X_F < 0. 325 0.05 < X_F < 0. 325 0.25 + Ĕ 0.2 **b**corr 0.05 1200 1400 200 400 600 800 1000 1200 1400 E_F [GeV] E_F [GeV] 0 < pT < 2 GeV/c, for $\pm 5\%$ dEdx cut 2 times smaller 0.05< X_F < 0.125 0.05< X_r < 0.125 エ centrality bins 0.125 < X_c< 0.325 0.125 < X_r< 0.325 + .05 0.05 < X_c < 0. 325 0.05 < X_c < 0. 325 エ 0.95 0.9 0.85

800

1000

1200

0.8

200

400

600

1000

1000

1200

E_F [GeV]

1400

1400 34 E_F [GeV]

Results for Ar+Sc collisions:

* $0.05 < X_F < 0.125$: No EM region 0.125 < $X_F < 0.325$: EM region

0 < pT < 2 GeV/c, for \pm 5% dEdx cut

35

Comparison between Ar+Sc and Pb+Pb:

• $0 < p_T < 0.1 = 0 < p_T < 0.3 = 0 < p_T < 0.5 = 0 < p_T < 2 = 0.3 < p_T < 2 = 0.5 < p_T < 2$

36

Comparison between Ar+Sc and Pb+Pb:

-

K

Ĕ

M

-

+`

Ĕ

М

• $0 < p_T < 0.1 = 0 < p_T < 0.3 = 0 < p_T < 0.5 = 0 < p_T < 2 = 0.3 < p_T < 2 = 0.5 < p_T < 2$

Summary:

- 1. First results for π^+/π^- ratios in Ar+Sc @40 A GeV/c collisions ($\sqrt{s_{NN}} = 8.76 \text{ GeV}$).
- We see the EM effects in the full range of centrality, up to peripheral Ar+Sc reactions (first time!).
- As compared to Ar+Sc @ 150 A GeV/c at intermediate centrality, the effect is slightly stronger in our sample of peripheral collisions. It is weaker if compared to the data on peripheral Pb+Pb @ 158 A GeV/c.
- 2. A first look at correlations and fluctuations in view of our EM effect analysis.
- > Dependence of $\omega(\pi^+)$, $\omega(\pi^-)$ and bcorr (π^+, π^-) on volume fluctuations as expected.
- $\succ \Sigma(\pi^+, \pi^-)$ appears to be strongly intensive (again).

This work is supported by the National Science Centre, Poland, under grant no. 2014/14/E/ST2/00018

Extra slides

Studying EM effects, text file results!

Data, event and track cuts:

• NA61/SHINE, ⁴⁰Ar + ⁴⁵Sc @ 40 A GeV/c.

 \rightarrow **Production used**: Ar_Sc_40_15/025_17b_v1r6p0_pA_slc6_phys.

→ **Runs**: 21058-21268.

Event cuts:

- Target IN,
- BPD status,
- WFA particles (4 µs),
- WFA interaction (25 μs),
- BPD3X(Y) charge,
- S5 (0 \rightarrow 170),
- T4 trigger,
- Vertex track fitted to the main vertex,
- Vertex fit quality = ePerfect,
- Fitted vertex position -580 ± 10 cm.
- Inner and outer PSD module cuts.

□ We have five centrality cuts based on PSD energy selection.

- □ The PSD modules 1-28 are selected.
- □ Total number of events = 296 k.

Reference NA49, Pb + Pb @ 158 A GeV/c, low intensity data, reconstructed with 01J (Pb+Pb chain), with dEdx calibration, centrality defined by cuts in total multiplicity of measured charged tracks.
41

Track cuts:

- Track status,
- Charge ± 1,
- Impact point[± 4cm; ± 2cm],
- Total number of clusters \geq 30,
- VTPCs clusters \geq 15,
- No GTPC clusters,
- dE/dx clusters \geq 30,
- Φ wedge ± 50°.

Cuts are same as for T2 trigger!! Due to that we narrow our range in centrality!

All event cut for Ar+Sc @ 40 A GeV/c T4 trigger statistics:

4

Centrality definition:

12000

counts

 E_{r} = Sum of 1 to 28 PSD modules.

Cut bias above 1090!!

The electromagnetic effect will be most visible

(for positive particles)

<u>dE/dx plots for the bin 0.025 < x_F < 0.075:</u>

<u> π^{+}/π^{-} ratio at five different centralities of Ar+Sc collisions @ 40 A GeV/c</u>:

<u> π^{+}/π^{-} ratio at five different centralities of Ar+Sc collisions @ 40 A GeV/c</u>:

Electromagnetic effects have been seen in Ar+Sc collisions. As compared to 150 A GeV/c effect is more strong at 40 A GeV/c but weaker than in peripheral Pb+Pb at 158 A GeV/c.

Trigger bias in most peripheral collisions needs an investigation!

data points from: NA49, T. Anticic et al., Phys. Rev. C 86, 054903 (2012)