

Production of light neutral mesons in the ALICE experiment

Adam Matyja Institute of Nuclear Physics PAN, Cracow, Poland NZ23 Seminar

- Motivation
- ALICE subdetectors
- Reconstruction methods
- Neutral mesons in pp, p-Pb and Pb-Pb collisions
 - \succ Production spectra, ratios, R_{AA}
- Summary++

Motivation

- Explore Quantum Chromodynamics (QCD) in unknown regimes → study QCD phase diagram
- Investigate properties of nuclear matter at high temperature ($T \ge 170$ MeV or 2 × 10¹² K) and density
- Important input for the understanding of the chiral symmetry restoration and the deconfinement (transition from hadronic to quark matter)

Why neutral mesons?

- Meson production in pp should be described by pQCD at large transverse momentum
 ⇒ How well do the current pQCD calculations describe the neutral meson production?
- Neutral meson spectra allow to put constraints on parameters of theoretical models in both perturbative (NLO, NNLO) and non-perturbative regime (parton distribution function, fragmentation function)

 \Rightarrow What about fragmentation and hadronization in modern Monte-Carlo generators?

- Hadrons carry information about medium
 - Studies of transport properties of quark-gluon matter
 - Initial gluon density

 \Rightarrow Do we understand hydrodynamic evolution of the matter produced in Pb-Pb or p-Pb collisions?

 \Rightarrow Is centrality evolution or strength of particle production reproduced?

- Test scaling laws
 - \Rightarrow What about very low-p_T?
 - Disentangle initial/final state effects

Calorimeters

EMCal + DCal - electromagnetic calorimeter

- Lead (76 layers) scintillator (77 layers) shashlik
- Tower size: $6 \text{ cm} \times 6 \text{ cm} \times 24.6 \text{ cm}$
- 20 super-modules $(10 + 4 \times 1/3 + 6 \times 2/3)$
- Acceptance: $80^{\circ} < \phi < 187^{\circ}$, $|\eta| < 0.7$ (EMCal)
- Acceptance: $260^{\circ} < \phi < 320^{\circ}$, $0.22 < |\eta| < 0.7$ (DCal)
- Acceptance: $320^{\circ} < \phi < 327^{\circ}$, $|\eta| < 0.7$ (DCal)
- 428 cm from the beam line
 - ~ 20 radiation length
- **Energy resolution:**

 $\sigma/E = (4.8 \pm 0.8)/E \oplus (11.3 \pm 0.5)/\sqrt{E} \oplus (1.7 \pm 0.3)\%.$

- PHOS photon spectrometer
- Crystal of lead tungstate (PbWO_{Δ})
- $3.5 \times 64 \times 56$ crystals of size: $2.2 \times 2.2 \times 18$ cm³
- Acceptance: $250^{\circ} < \phi < 320^{\circ}$, $|\eta| < 0.12$
- Energy resolution: $\sigma/E = 1.3/E \oplus 3.3/\sqrt{E} \oplus 1.12\%$
 - Distance to IP: 4.6 m PHOS crystal

NZ23 Seminar - Adam Matyja

2019-10-18

Tracking System = ITS + TPC

TPC – time projection chamber

- Diameter × Length : 5 m × 5 m
- Acceptance: $\Delta \phi = 2\pi$, $|\eta| < 0.9$
- Readout chambers: 72
- Pad readout (3 types): 557 568
- Drift field: 400 V/cm
- Maximum drift time: 92 μs
- Central electrode HV: 100 kV
- Gas:
 - Active volume: 90 m³
 - Ne-CO₂-N₂: 85.7% 9.5% 4.8%
- ITS inner tracking system
 - Layout
 - 2 layers of pixel detectors
 - 2 layers of drift detectors
 - 2 layers of strip detectors
 - Acceptance: $\Delta \phi = 2\pi$, $|\eta| < 0.9$

TS energy resolution: $\Delta E/E \approx 2\%$

Triggers and datasets

- MB (aka INT7):
 - coincidence of signal in both VOA and VOC
- EMCal trigger EMC7:
 - EMCal L0 trigger 2x2 FastOR (4x4 cells) sliding window AND INT7
 - Threshold 2 GeV
- EMCEGA:
 - Higher thresholds: 5 and 9 GeV
- EMCal jet trigger EMCEJE:
 - 8x8 FastORs (16 x 16 cells)
 - Threshold 20 GeV
- PHI7:
 - 2x2 FastOR (4x4 cells) sliding window
 - Threshold 4 GeV

-	\sqrt{s} (TeV)		Data	Set	Used trig	gers # events	
	рр	5	Data Data PYT PYT	HIA8 (MC) HIA8 JJ (MC)	LHC15n pass 4 LHC15n pass 4 LHC17e2 + LHC18j3 LHC16h3	ll CF-EN Il Mimicl	NT7 0.1 B MC7 1.17 M NT7 0.09 B king 145 M
	рр	5	Data Data Data PYTHIA8 (MC) PYTHIA8 JJ (MC)		LHC17p + LHC17q pass FAST & CENT(woSDD) LHC17p + LHC17q pass LHC17p + LHC17q pass LHC17l3b + LHC18j2 FAST & CENT(woSDD) LHC18b8	1 1 kP 1 CF-I If Mimicl	NT7 0.83 B PHI7 1.2 M EG2 10.7 M NT7 0.72 B king 28.7 M
	\sqrt{s} (TeV)						
			∨)	Data Set		Used triggers	Number of events
	Pb-I	Pb	5	Data	LHC150	0-10% 10-30% 30-50% 50-90%	7.36 M 14.7 M 14.8 M 29.5 M
	Pb-F	Ър	5	Data	LHC18qr	0-10% 10-30% 30-50% 50-90%	148.9 M 17.6 M 86.6 M 34.1 M

Used MC datasets: Pb-Pb

5 Anchored to 2015: LHC16h4, LHC18e1, LHC18e1(a,b,c)

7 anchored to 2018: LHC18l8(a4,b2,c2), LHC19h3, LHC19h2(a,b,c)
 NZ23 Seminar - Adam Matyja
 7

Method of photon extraction

- Energy deposit in calorimeter (EMCal, PHOS)
- External conversion electrons , $\gamma \rightarrow e^+ e^-$ (PCM)
 - Radiation length X/X0 = (11.4 ± 0.5) %
 - Small conversion probability (~ 8.5 %) is compensated by a wide acceptance
 - Material budget well known with relative precision of 4.5 %

Variable	Requirement
V0-finder	On-the-fly
Topology cut	no kinks
TPC refit	Required
p_{T}	> 50 MeV/c
Cut on $\frac{N_{\text{clusterTPC}}}{N_{\text{findable}clusters}}$	> 60%
η cut for tacks and V ⁰	$ \eta < 0.8$
Cut on $R_{\rm conv}$	$5 \text{ cm} < R_{\text{conv}} < 180 \text{ cm}$
Cut on Z _{conv}	$ Z_{\rm conv} < 240 \text{ cm}$

Table 2: Summary of track and V⁰ selection cuts.

$$R_{conv} > Z_{conv} \cdot S(\eta_{cut}) - Z_0$$

$$Z_0 = 7 \text{ cm}$$

Electron ID cuts

Variable	Requirement
$n\sigma_e$ TPC dE/dx (accept)	$-3 < n\sigma_e < 3$
$n\sigma_{\pi}$ TPC dE/dx (reject)	0.4 $p > 3.5 GeV/c : no cut$

Armanteros-Podolanski γ selection

• Remove K^0_{s} , Λ , $\overline{\Lambda}$

$$(\frac{\alpha}{\alpha_{\max}})^2 + (\frac{q_{\mathrm{T}}}{q_{\mathrm{T},\max}})^2 > 1$$

$$q_{\rm T} = \frac{|\overrightarrow{p_{\rm T}} \times \overrightarrow{p_{\rm m}}|}{|\overrightarrow{p_{\rm m}}|} \qquad \qquad \alpha = \frac{p_{\rm L}^+ - p_{\rm L}^-}{p_{\rm L}^+ + p_{\rm L}^-}$$

 $\alpha_{max} = 0.95, q_{T,max} = 0.05 \text{ GeV/c}$

NZ23 Seminar - Adam Matyja

Methods of neutral meson extraction

- Shower shape
 - High $p_T \pi^0$ decay pairs showers overlap

$$\sigma_{long}^2 = 0.5 \left(\sigma_{\phi\phi}^2 + \sigma_{\eta\eta}^2 + \sqrt{(\sigma_{\phi\phi}^2 - \sigma_{\eta\eta}^2)^2 + 4\sigma_{\eta\phi}^4}\right),$$

NZ23 Seminar - Adam Matyja

Methods of neutral meson reconstruction

2019-10-18

NZ23 Seminar - Adam Matyja

Neutral meson reconstruction flow

- Invariant mass $M_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta_{12})}$
- Event mixing to estimate combinatorial background
- Extraction of signal (exponent + Gaussian) and background (polynomial) parameterization

$$y = A \cdot \left(G(M_{\gamma\gamma}) + \exp\left(\frac{M_{\gamma\gamma} - M_{\pi^0(\eta)}}{\lambda}\right) (1 - G(M_{\gamma\gamma})) \Theta(M_{\pi^0,\eta} - M_{\gamma\gamma}) \right) + B + C \cdot M_{\gamma\gamma}$$

with $G = \exp\left(-0.5\left(\frac{M_{\gamma\gamma} - M_{\pi^0,\eta}}{\sigma_{M_{\gamma\gamma}}}\right)^2\right)$

- Corrections based on MC and data
 - In-bunch and out-of-bunch pile-up
 - Vertex reconstruction
 - Feed-down
 - Efficiency and acceptance
 - Trigger rejection factor
- Merging results from different methods
 - Finite p_T bin shift
- Cross-section:

$$E\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}p^{3}} = \frac{N_{\mathrm{rec}}}{p_{\mathrm{T}}^{*}\Delta p_{\mathrm{T}}\varepsilon\varepsilon_{\mathrm{trig}}}\frac{1}{L_{\mathrm{int}}}\frac{1}{\mathrm{BR}}$$

Neutral meson reconstruction flow

- Invariant mass $M_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta_{12})}$
- Event mixing to estimate combinatorial background
- Extraction of signal (exponent + Gaussian) and background (polynomial) parameterization

$$y = A \cdot \left(G(M_{\gamma\gamma}) + \exp\left(\frac{M_{\gamma\gamma} - M_{\pi^0(\eta)}}{\lambda}\right) (1 - G(M_{\gamma\gamma})) \theta(M_{\pi^0,\eta} - M_{\gamma\gamma}) \right) + \left(B + C \cdot M_{\gamma\gamma}\right)$$
with $G = \exp\left(-0.5\left(\frac{M_{\gamma\gamma} - M_{\pi^0,\eta}}{\lambda}\right)^2\right)$

Signal

with
$$G = \exp\left(-0.5\left(\frac{M_{\gamma\gamma} - M_{\pi^0,\eta}}{\sigma_{M_{\gamma\gamma}}}\right)^2\right)$$

- Corrections based on MC and data
 - In-bunch and out-of-bunch pile-up
 - Vertex reconstruction
 - Feed-down
 - Efficiency and acceptance
 - Trigger rejection factor
- Merging results from different methods
 - Finite p_{T} bin shift
- Cross-section:

$$E\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}p^{3}} = \frac{N_{\mathrm{rec}}}{p_{\mathrm{T}}^{*}\Delta p_{\mathrm{T}}\varepsilon\varepsilon_{\mathrm{trig}}}\frac{1}{L_{\mathrm{int}}}\frac{1}{\mathrm{BR}}$$

Background

Neutral meson reconstruction flow

- Invariant mass $M_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta_{12})}$
- Event mixing to estimate combinatorial background
- Extraction of signal (exponent + Gaussian) and background (polynomial) parameterization

$$y = A \cdot \left(G(M_{\gamma\gamma}) + \exp\left(\frac{M_{\gamma\gamma} - M_{\pi^0(\eta)}}{\lambda}\right) (1 - G(M_{\gamma\gamma})) \theta(M_{\pi^0,\eta} - M_{\gamma\gamma}) \right) + B + C \cdot M_{\gamma\gamma}$$

Signal

with
$$G = \exp\left(-0.5\left(\frac{M_{\gamma\gamma} - M_{\pi^0,\eta}}{\sigma_{M_{\gamma\gamma}}}\right)^2\right)$$

 $\rightarrow L_{\rm int} \times \sigma_{\rm trig} = N_{\rm ev}$

- Corrections based on MC and data
 - In-bunch and out-of-bunch pile-up
 - Vertex reconstruction
 - Feed-down $\longrightarrow N_{\rm rec} \rightarrow N_{\rm rec} N_{\rm s}$
 - Efficiency and acceptance,
 - Trigger rejection factor
- Merging results from different methods
 - Finite p_{T} bin shift
- Cross-section:

 $p_{\rm T} \mathcal{E} \overline{\mathcal{E}}_{\rm trig} L_{\rm int}$

Vertex and pile-up

NZ23 Seminar - Adam Matyja

Feed-down correction

 Disagreement of K/π ratio in data and MC

- Correction for π⁰ coming from K⁰_S and other strange particles – O(5%)
- Currently cocktail based

Effective efficiency = efficiency and acceptance

- Two ways of efficiency calculation:
 - Reconstructed as in data
 - Validated with MC true
- \Rightarrow Good agreement between data and MC necessary
- \Rightarrow Good agreement between MC and MC true necessary

Trigger rejection factor

$$R^{\text{trig}} = \frac{N_{\text{evt}}^{\text{INT7}}}{N_{\text{evt}}^{\text{EMC7}}} \frac{\mathrm{d}N^{\text{EMC7}}/\mathrm{d}p_{\text{T}}^{\gamma-cand}}{\mathrm{d}N^{\text{INT7}}/\mathrm{d}p_{\text{T}}^{\gamma-cand}}$$

Systematics

- PCM
 - Material budget
 - Yield extraction
- Calorimeters
 - Yield extraction
 - Material budget in front of Calo
 - Energy scale (PHOS), nonlinearity (EMCal)

Results merging

Triggers are merged at first by weighted average

$$\hat{\mu} = \frac{1}{w} \sum_{i}^{n} w_{i} y_{i} \qquad \qquad w_{i} = \frac{1}{\sigma_{i}^{2}} \qquad \qquad w = \sum_{i}^{n} w_{i}$$

Then systems are merged by BLUE algorithm, taking cross-correlations into

Neutral meson spectra in pp collisions

- Preliminary result for π^0 spectrum produced at $\sqrt{s} = 5$ TeV
- π^0 and η mesons reconstructed in wide p_{τ} range
- Power law dependence at high p_{T}
- PYTHIA 8.2 Monash 2013 MC describes data, but larger discrepancy at mid- p_{T} for higher energies
- NLO calculations overpredict data for both π^0 (20% - 60%) and η (50% - 100%)
 - Update on η FF desired (as done for pions and kaon)

0.9, 7 TeV: PLB 717(2012) 162-172. 2.76 TeV: EPJC 74 (2014) 3108; EPJC 77 (2017) 339. 8 TeV: EPJC 78 (2018) 263

NLO: PRD 91 (2015) 1, 014035

Neutral meson spectra in pp collisions

p (GeV/c)

- Preliminary result for π^0 spectrum produced at $\sqrt{s} = 5$ TeV
- π^0 and η mesons reconstructed in wide p_{τ} range
- Power law dependence at high p_{T}
- PYTHIA 8.2 Monash 2013 MC describes data, but larger discrepancy at mid- p_{T} for higher energies
- NLO calculations overpredict data for both π^0 (20% - 60%) and η (50% - 100%)
 - Update on η FF desired (as done for pions and kaon)

0.9, 7 TeV: PLB 717(2012) 162-172. 2.76 TeV: EPJC 74 (2014) 3108; EPJC 77 (2017) 339. 8 TeV: EPJC 78 (2018) 263

NLO: PRD 91 (2015) 1, 014035

Meson production in p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

- EPOS3: K.Werner et al., PRC89 (2014) 064903. VISHNU: C.Shen at al., PRC95 (2017) 014906. CGC: T.Lappi et al., PRD88 (2013) 114020.
- VISHNU (hydro) model describes low-p_T range (expected)
- **Good description of** π^0 spectrum by NLO pQCD calculations, but fails for η in high- p_{T} region

- Spectra of π^0 and η mesons measured in centrality classes
- Extended p_T range \rightarrow up to 40 GeV/*c* by using PHOS trigger
- Both DPMJet and EPOS-LHC underpredict data at high p_T for every centrality class
- Low p_T data better described by EPOS-LHC than DPMJet

Neutral meson spectra in Pb-Pb collisions at $\sqrt{s_{\text{NN}}}$ = 5.02 TeV

- Preliminary measurement of π^0 spectrum in several 5 centrality classes at $\sqrt{s_{NN}} = 5.02$ TeV in the range $0.4 < p_T < 30$ GeV/c
- Good description of low-p_T region, failure or no description of high-p_T range

Nuclear modification factor

 $R_{AA}(p_{T}) = \frac{d^2 N / dp_{T} dy|_{AA}}{\langle T_{AA} \rangle \times d^2 \sigma / dp_{T} dy|_{pp}}$

 $N_{\rm coll} = \sigma_{\rm pp} < T_{\rm AA} >$

- Illustrates medium effect
- Contains both initial and final state effect
 - Initial state: i.e. Cronin, nuclear shadowing
 - Final state: collisional and radiative energy loss
- $R_{AA} = 1 \rightarrow$ no modification
- Well defined fragmentation function in comparison to unidentified hadrons
- Very strong suppression in central Pb-Pb collisions above p_T ≈ 3 GeV/c, p_T dependent, largest suppression R_{AA} ~ 0.1 at p_T ≈ 7 GeV/c ⇒ Formation of hot and dense QCD matter
- Centrality dependence
- Similar suppression for two Pb-Pb collision energies
- Consistent with unity above 2 GeV/c for p-Pb
- Agreement with results for charged hadrons

π^0 meson R_{AA} in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

Djordjevic: PRC94 (2016) 044908 Energy loss in evolving finite-size QGP

Vitev: PRD93 (2016) 074030 Soft-Collinear Effective Theory (SCET) for jet propagation in matter

- Relatively well described by models
- Centrality dependence reproduced
- Although worsening towards more peripheral collisions

$m_{\rm T}$ scaling (transverse mass)

$$m_T = \sqrt{m^2 + p_T^2}$$

- Proposed empirical description of hadron production
 - Bourquin, Gaillard, NPB 114 (1976) 334.
- Differential cross-section as a function of the transverse mass:

$$E\frac{d^3\sigma}{dp^3} = C \ (m_T + a)^{-n}$$

• Cross-section ratio of η and π^0 mesons:

$$R_{\eta/\pi^{0}}(p_{T}) = R_{\eta/\pi^{0}} \left(\frac{a + \sqrt{m_{\eta}^{2} + p_{T}^{2}}}{a + \sqrt{m_{\pi^{0}}^{2} + p_{T}^{2}}} \right)^{n}$$

 Let foreseen unknown production cross-section for not yet measured particles

Summary

- ALICE can measure neutral mesons in wide p_{T} range
- Measurements allow testing perturbative QCD inspired models and parameterization of parton distribution and fragmentation functions
 - Higher yield predicted by NLO pQCD for π^0 (by 20-60%) and η (by 50-100%)
- Data relatively well described by variety of Monte Carlo generators, however there are some tensions
- Centrality, p_T dependence and suppression strength of neutral mesons in Pb-Pb reproduced by models

Verte

Ongoing activities

- Facing QM2019 new set of preliminaries is on its way:
 - Improved π^0 spectrum in pp and Pb-Pb collisions
 - New η spectrum in pp and Pb-Pb collisions
 - New η/π^0 ratio in pp and Pb-Pb collisions
 - Improved R_{AA} for π^0 in more centrality classes
 - New R_{AA} for η in centrality classes
- Paper is being written

New measurements

NZ23 Seminar - Adam Matyja

New results in pp

New results in Pb-Pb

Now is the end

Thanks!

Backup

ALICE photon and neutral mesons papers

Neutral mesons Invariant mass $M_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta_{12})}$	pp @ 0.9 , 7 TeV: pp @ 2.76 TeV: pp @ 8 TeV: p-Pb @ 5.02 TeV: Pb-Pb @ 2.76 TeV [.]	PLB 717(2012) 162-172. EPJC 74 (2014) 3108; EPJC 77 (2017) 339. EPJC 78 (2018) 263. EPJC 78 (2018) 624. EPIC 74 (2014) 3108: PRC 98 (2018)044901
Direct photons	pp @ 2.76, 8 TeV: Pb-Pb @ 2.76 TeV:	PRC 99 (2019) 024912. PLB 754 (2016) 23-248.
Isolated photons	pp @ 7 TeV:	arXiv:1906.01371.

Neutral meson R_{AA} in Pb-Pb at $\sqrt{s_{NN}}$ =2.76 TeV

NLO DCZW : Phys. Lett. B750 (2015) 390-395 WHDG : Int. J. Mod. Phys. E16 (2007) 2193-2199 Djordjevic : Phys. Lett. B734 (2014) 286-289 Vitev et al.: Phys. Rev. D 93, 074030 (2016)

- NLO DCZ describes suppression in central Pb-Pb collsions for π⁰ but overpredicts η
- Vitev and Djordjevic describe both centralities for π⁰
- WHDG model predictions lie below measurements

- Spectra of π^0 and η mesons measured in 4 centrality classes
- Extended p_T range \rightarrow up to 40 GeV/*c* by using PHOS trigger

π^0 production spectrum in pp @ 5 TeV comparison

R_{AA} for p-Pb and Pb-Pb

PRL 110, 082302 (2013)

Neutral meson spectra in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 and 5.02 TeV

- Extended range up to $p_T = 20 \text{ GeV}/c$ for π^0 at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ in comparison to PLB 717 (2012) 162-172
- First measurement of the η meson in Pb-Pb collisions at the LHC
- Preliminary measurement of π^0 spectrum in several centrality classes at $\sqrt{s_{NN}} = 5.02$ TeV in the range $0.4 < p_T < 30$ GeV/c
- Good description of low- p_T region, failure or no description of high- p_T range

Method of photon and neutral meson extraction

Photons

- External conversion electrons , γ → e⁺ e⁻ (PCM)
 - Small conversion probability (~ 8.5 %) is compensated by a wide acceptance
 - Material budget well known with relative precision of 4.5 %
 - Radiation length X/X0 = (11.4 ± 0.5) %
- Energy deposit in calorimeter (EMCal, PHOS)
- Neutral mesons
 - Invariant mass analysis:
 - $h \rightarrow \gamma + \gamma$ (PHOS, EMCal)
 - $h \rightarrow \gamma (\rightarrow e^+ e^-) + \gamma (\rightarrow e^+ e^-)$ (PCM)
 - Dalitz decays $h \rightarrow \gamma \gamma^* \rightarrow \gamma (\rightarrow e^+ e^-) e^+ e^-$ (PCM)
 - Hybrid methods (PHOS + PCM, EMCal +PCM)
 - Shower shape
 - High $p_T \pi^0$ decay pairs showers overlap

Distribution of conversions

Centrality estimation in Pb-Pb

• Centrality observables

- Charge particle multiplicity in VZERO
- Forward energy in ZDC
- SPD for systematics
- Number of particle sources

 $f \times N_{part}$ + (1 - f) × N_{coll}

- Number of particles produced by each source given by Negative Binomial Distribution (μ, κ)
- Glauber model fits to cross-section
 - 100% trigger efficiency
 - Background is negligible
 - \rightarrow ~ 90% of total cross-section

with $\sigma_{\text{INFI}}^{\text{NN}} = 64 \pm 5 \text{ mb}$

<1% agreement (0-70%) N_{part} with Glauber fit 3.5 % for peripheral (>70%)

• Define centrality classes corresponding to fractions of the inelastic Pb-Pb cross-section

Functions

• Tsallis $f(p_T) = \frac{1}{2\pi} \frac{dN}{dy} \frac{(n-1)(n-2)}{nT(nT+m(n-2))} (1 + \frac{\sqrt{p_T^2 + m^2} - m}{nT})^{-n}$ $d^3 \sigma^{pp \to \pi^0 X} = \frac{\sigma_{nn}^{INEL}}{(n-1)(n-2)} (n-1)(n-2) + m_T - m$

$$E\frac{d^{2}G^{pp}-mn}{dp^{3}} = \frac{G_{pp}}{2\pi}A\frac{(n-1)(n-2)}{nC[nC+m(n-2)]}(1+\frac{m_{T}-m}{nC})^{-n}$$

• Hagedorn

$$E\frac{d^3\sigma^{pp\to\pi^0 X}}{dp^3} = (\frac{p_0}{p_0 - p_T})^n$$

• Power law

$$E\frac{d^3\sigma^{pp\to\pi^0 X}}{dp^3} = c(\frac{1}{p_T})^n$$

• Two Component Model (TCM)

$$\frac{1}{2\pi N_{\rm ev}} \frac{\mathrm{d}^2 N}{p_{\rm T} \mathrm{d} p_{\rm T} \mathrm{d} y} = A_{\rm e} \exp\left(-E_{\rm T,kin}/T_{\rm e}\right) + A\left(1 + \frac{p_{\rm T}^2}{T^2 n}\right)^{-n}$$

π^0 spectra in Pb-Pb @ $\sqrt{s_{NN}}$ = 2.76 TeV, new result

- 10 times more statistics in 2011 (L ~ 0.1 nb⁻¹)
- Extended p_T range up to 20 GeV/c
- Two complementary analyses methods: EMCal and PCM
- Two centrality classes compared to pp
- Compared to NLO pQCD pp predictions scaled by N_{coll} (PRD 91 (2015) 1, 014035)

η spectra in Pb-Pb @ $\sqrt{s_{NN}}$ = 2.76 TeV

- First η measurement in Pb-Pb at the LHC
- Range: 1 < p_T < 20 GeV/c</p>
- Two complementary systems: EMCal and PCM
- Two centrality classes compared to pp
- Compared to η production of NLO pQCD pp predictions scaled by N_{coll} (PRD 91 (2015) 1, 014035)

π^0 spectra in Pb-Pb @ 5.02 TeV

Meson R_{AA} in Pb-Pb @ 2.76 TeV

NLO DCZW :

Phys. Lett. B750 (2015) 390-395 WHDG :

Int. J. Mod. Phys. E16 (2007) 2193-2199 Djordjevic :

Phys. Lett. B734 (2014) 286-289 Vitev et al.:

Phys. Rev. D 93, 074030 (2016)

Mesons R_{AA} in p-Pb @ 5.02 TeV

EPJC 78 (2018) 624