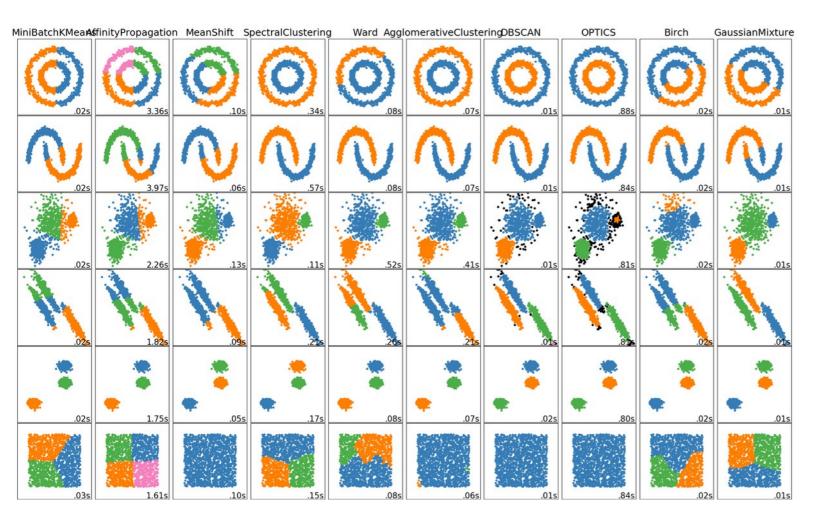


Clustering Analiza skupień



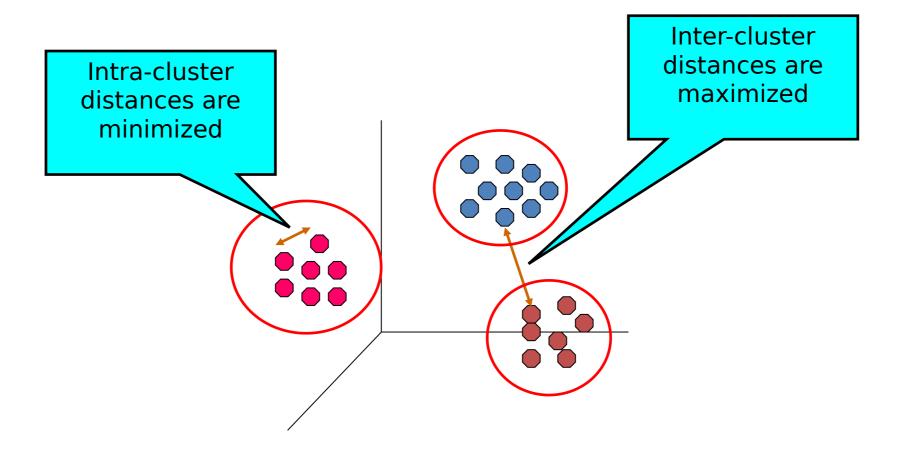
Marcin Wolter IFJ PAN

20 January 2020

4

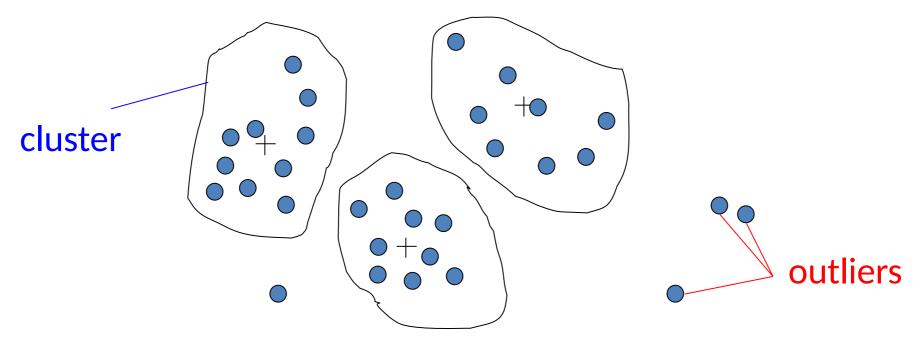
What is clustering?

 A grouping of data objects such that the objects within a group are similar (or related) to one another and different from (or unrelated to) the objects in other groups



Outliers

• **Outliers** are **objects that do not belong to any cluster** or form clusters of very small cardinality (number of cluster members).



• In some applications we are interested in discovering outliers, not clusters (outlier analysis)

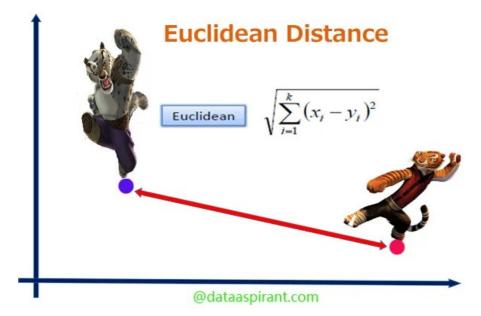
The clustering task

- Group observations into groups so that the observations belonging in the same group are similar, whereas observations in different groups are different =>
- We need a distance between points:

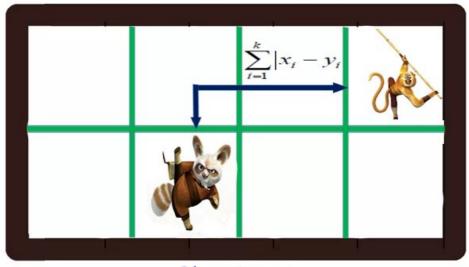
The distance d(x, y) between two objects x and y is a metric if:

- $d(i, j) \ge 0$ (non-negativity)
- d(i, i)=0 (isolation)
- d(i, j)= d(j, i) (symmetry)
- $d(i, j) \le d(i, h)+d(h, j)$ (triangular inequality)

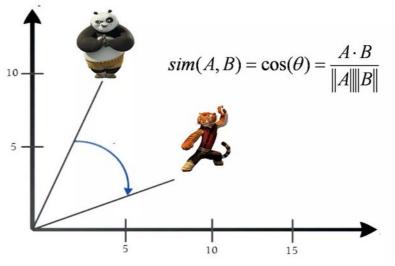
Distance



Manhattan Distance



Cosine Similarity



- Euclidian
- Manhattan
- Cosine similarity
- many other

@dataaspirant.com

Data Structures

attributes/dimensions

• data matrix $\begin{bmatrix} x_{11} & \cdots & x_{1\ell} & \cdots & x_{1d} \\ \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{i\ell} & \cdots & x_{id} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{n\ell} & \cdots & x_{nd} \end{bmatrix}$ tuples/objects objects • **Distance** matrix 0 0 *d*(2,1) objects *d*(3,1) *d*(3,2)

M. Wolter, Clustering

d(*n*,1)

U

0

•

d(*n*,2)

Non-hierarchical methods the k-means algorithm

- Given a set X of n points in a d-dimensional space and an integer k
- Task: choose a set of k points (cluster centers) {c₁, c₂,...,c_k} in the ddimensional space to form clusters {C₁, C₂,...,C_k} such that

$$Cost(C) = \sum_{i=1}^{k} \sum_{x \in C_i} L_2^{2}(x - c_i)$$

is minimized

• Some special cases: k = 1, k = n

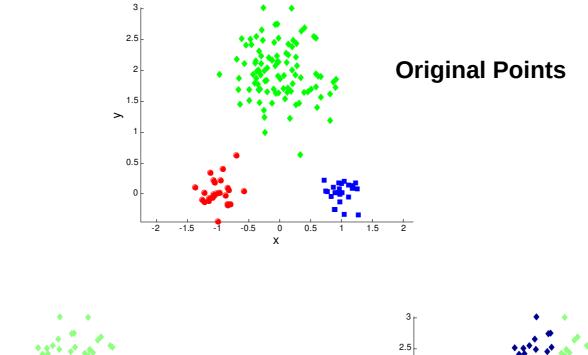
The k-means algorithm

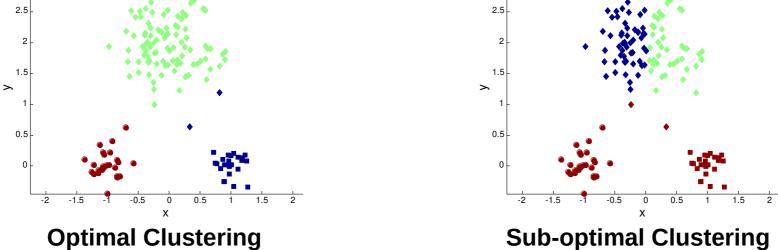
- Randomly pick k cluster centers {c₁,...,c_k}
- For each i, set the cluster C_i to be the set of points in X that are closer to c_i than they are to c_j for all i≠j
- For each i let c_i be the center of cluster C_i (mean of the vectors in C_i)
- Repeat until convergence

Properties of the k-means algorithm

- Finds a local optimum
- Converges often quickly (but not always)
- The choice of initial points can have large influence in the result

Two different K-means clusterings





3

Some alternatives to random initialization of the central points

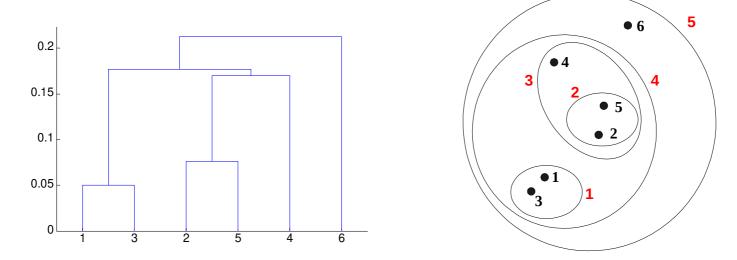
- Multiple runs
 - Helps, but probability is not on your side
- Select original set of points by methods other than random . E.g., pick the most distant (from each other) points as cluster centers (kmeans++ algorithm in Scikit Learn)

Example of k-means algorithm

- https://github.com/marcinwolter/ANOVA_2019/blob/master/plot_k means_assumptions.ipynb
- The KMeans algorithm clusters data by trying to separate samples in n groups of equal variance, minimizing a criterion known as the inertia or within-cluster sum-of-squares (see below). This algorithm requires the number of clusters to be specified. It scales well to large number of samples and has been used across a large range of application areas in many different fields.

Hierarchical Clustering

- Produces a set of *nested clusters* organized as a hierarchical tree
- Can be visualized as a **dendrogram**
 - A tree-like diagram that records the sequences of merges or splits



Strengths of Hierarchical Clustering

- No assumptions on the number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level
- Hierarchical clusterings may correspond to some meaningful features

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or **k** clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)

Complexity of hierarchical clustering

- Distance matrix is used for deciding which clusters to merge/split
- At least quadratic in the number of data points
- Not usable for large datasets

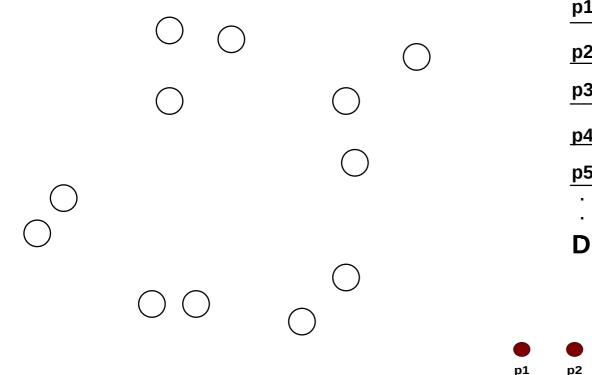
Agglomerative clustering algorithm

• Most popular hierarchical clustering technique

- Basic algorithm
 - 1. Compute the distance matrix between the input data points
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the distance matrix
 - 6. Until only a single cluster remains
- Key operation is the computation of the distance between two clusters
 - Different definitions of the distance between clusters lead to different algorithms

Input / Initial setting

Start with clusters of individual points and a distance/proximity matrix



	p1	p2	р3	p4	p5	<u>.</u>			
p1									
<u>p2</u>						_			
р3									
<u>p4</u>						_			
р5									
:									
Distance/Proximity Matrix									
				-					

р9

p10

p11

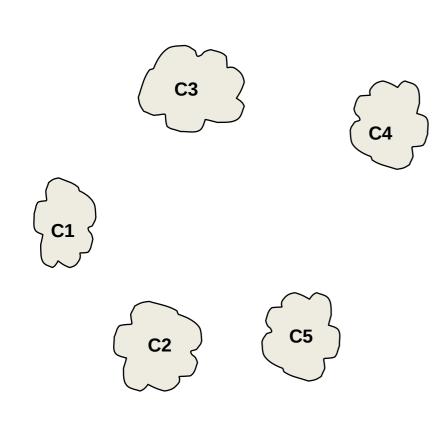
p12

p3

p4

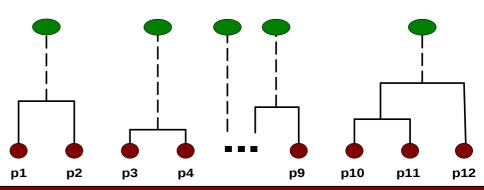
Intermediate State

• After some merging steps, we have some clusters



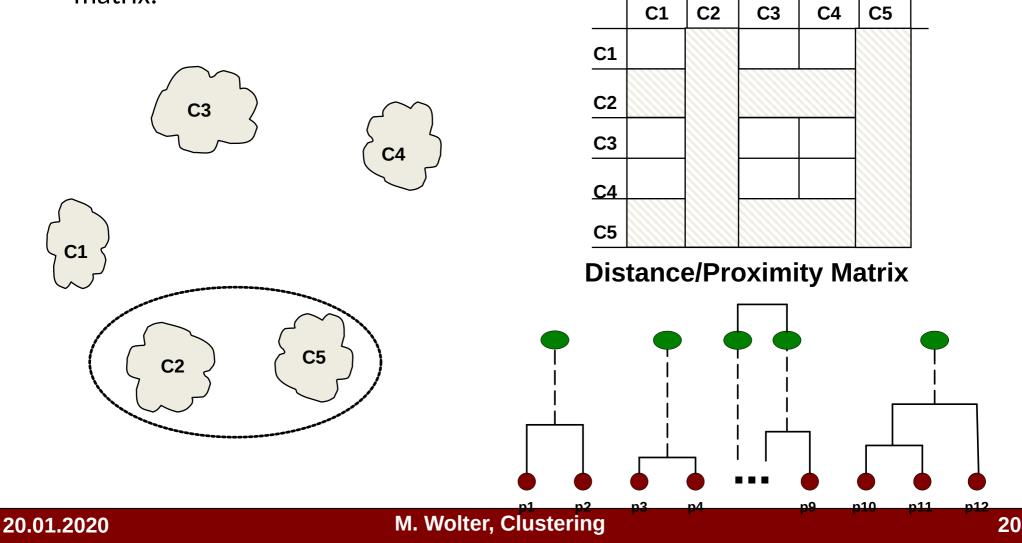
	C1	C2	C3	C4	C5
C1					
C2					
C3					
C 4					
C5					

Distance/Proximity Matrix



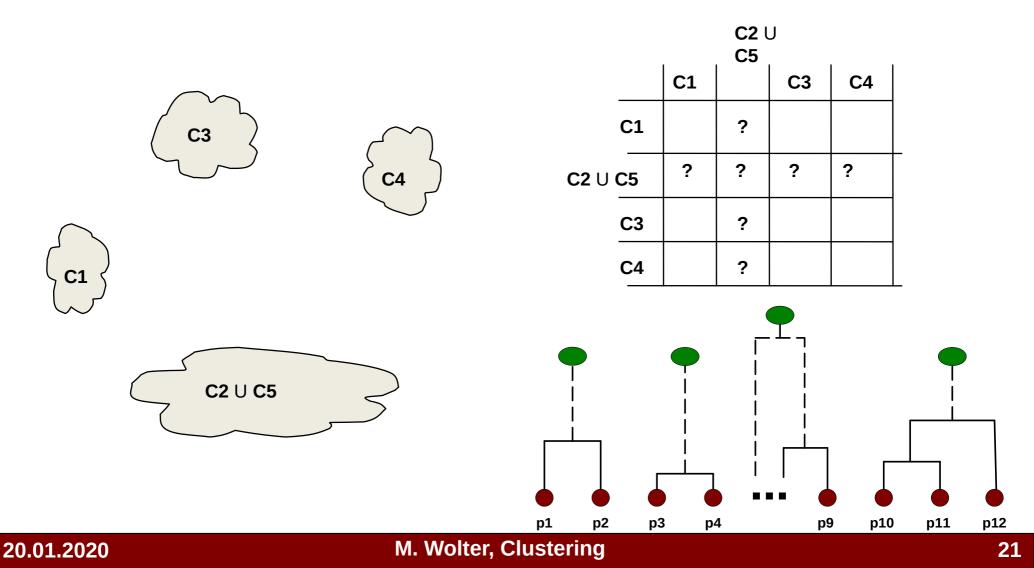
Intermediate State

• Merge the two closest clusters (C2 and C5) and update the distance matrix.



After Merging

• "How do we update the distance matrix?"



Distance between two clusters

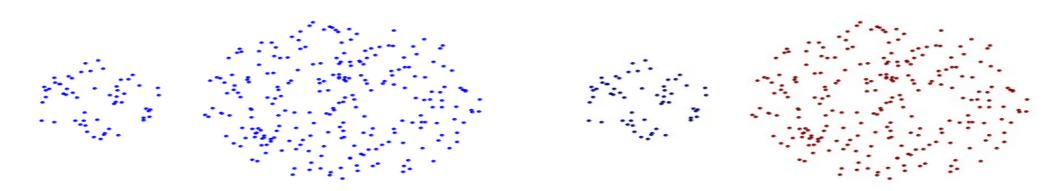
- Each cluster is a set of points
- How do we define distance between two sets of points?
 - Lots of alternatives
 - Not an easy task

Distance between two clusters

- Single-link distance between clusters C_i and C_j is the minimum distance between any object in C_i and any object in C_j
- The distance is defined by the two most similar objects

$$D_{sl}(C_i,C_j) = \min_{x,y} \left| d(x,y) \right| x \in C_i, y \in C_j \right|$$

Strengths of single-link clustering

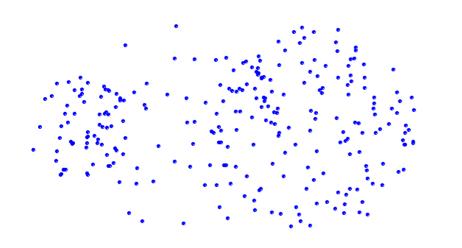


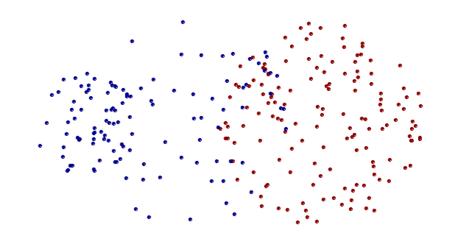
Original Points

Two Clusters

• Can handle non-elliptical shapes

Limitations of single-link clustering





Original Points

Two Clusters

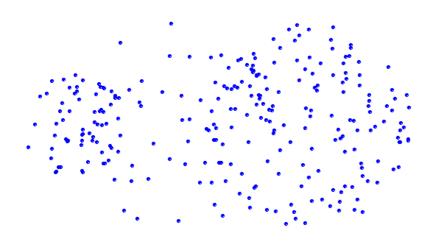
- Sensitive to noise and outliers
- It produces long, elongated clusters

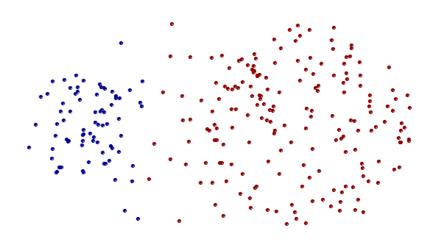
Distance between two clusters

- Complete-link distance between clusters C_i and C_j is the maximum distance between any object in C_i and any object in C_j
- The distance is defined by the two most dissimilar objects

$$D_{cl}(C_i,C_j) = \max_{x,y} \left| d(x,y) \right| x \in C_i, y \in C_j \right|$$

Strengths of complete-link clustering



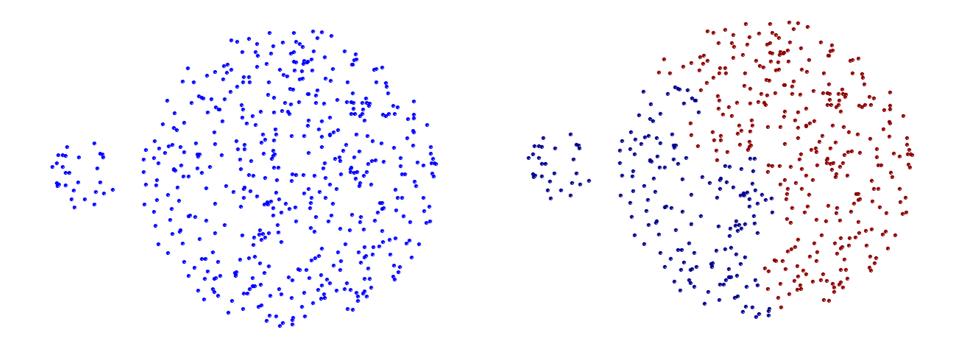


Original Points

Two Clusters

- More balanced clusters (with equal diameter)
- Less susceptible to noise

Limitations of complete-link clustering



Original Points

Two Clusters

- Tends to break large clusters
- All clusters tend to have the same diameter small clusters are merged with larger ones

Distance between two clusters

 Group average distance between clusters C_i and C_j is the average distance between any object in C_i and any object in C_i

$$D_{avg}(C_{i}, C_{j}) = \frac{1}{|C_{i}| \times |C_{j}|} \sum_{x \in C_{i}, y \in C_{j}} d(x, y)$$

Distance between two clusters

Ward's distance between clusters C_i and C_j is the difference between the total within cluster sum of squares for the two clusters separately, and the within cluster sum of squares resulting from merging the two clusters in cluster C_{ii}

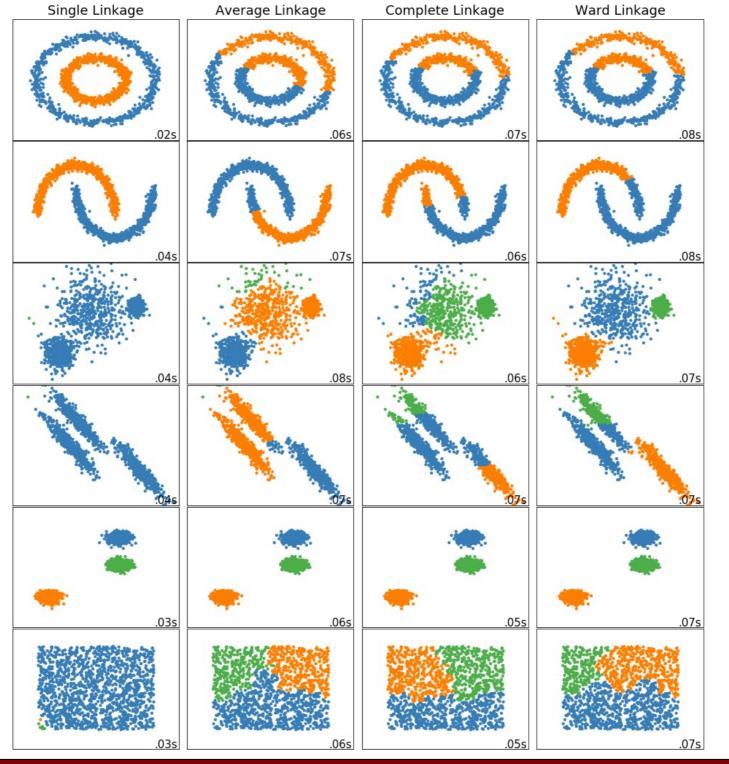
$$D_{w}(C_{i}, C_{j}) = \sum_{x \in C_{i}} (x - r_{i})^{2} + \sum_{x \in C_{j}} (x - r_{j})^{2} - \sum_{x \in C_{ij}} (x - r_{ij})^{2}$$

- r_i: centroid of C_i
- r_i: centroid of C_i
- r_{ij}: centroid of C_{ij}

Ward's distance for clusters

- Similar to group average and centroid distance
- Less susceptible to noise and outliers

- Hierarchical analogue of k-means
 - Can be used to initialize k-means

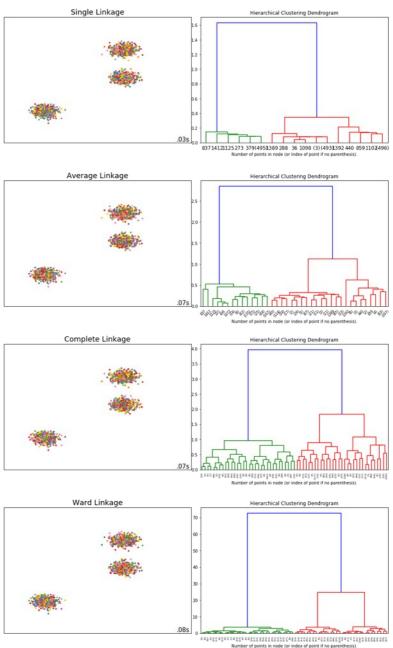


20.01.2020

M. Wolter, Clustering

Comparison of distance measurements

 https://github.com/marcinwolter/ANOVA_20 19/blob/master/plot_linkage_comparison.ipy nb



20.01.2020

M. Wolter, Clustering