Deep Neural Networks

Artificial
Intelligence

Deep

Learning Marcin Wolter
IFJ PAN

16 December 2019

16.12.2019 M. Wolter, Deep Neural Networks

ils

Deep Neural Networks

® How are the Deep Neural Networks built?

Artificial
Intelligence

® \\hat can we do with them?

® Some simple examples in python

All examples from this lecture are available on g
https://github.com/marcinwolter/DNN_examples

Deep
1980S-ERA NEURAL NETWORK DEEP LEARNING NEURAL NETWORK : Learning

Hidden Multiple hidden layers
layer

process hierarchical features

e

% c‘\ N
FHAER

Identify) B
light/dark e s or features
pixel value Identify Identify Identify
Links carry signals \ edges combinations features /'
from one node) of edges

to another, boosting

sdiyege =75 HEF TH= mEe EEHE
o= BDE BEU AP BEH

16.12.2019 M. Wolter, Deep Neural Networks

https://github.com/marcinwolter/DNN_examples

ils

What is Machine Learning?

Traditional approach

+ 23 = B

Herbert Simon Machine Learning
Turing Award 1975

Nobel Prize in Economics 1978 —
. Input + Output — Program
* Herbert Alexander Simon:

“Learning is any process by Example: Having input and the desired output (eg.

which a system improves calorimeter jet and it's energy) we can create a
program (train our algorithm) to give us the desired

performance from experience.” output (the energies of other jets).
* “Machine Learning is concerned

with computer programs that

automatically improve their

performance through

experience. “

Tom Mitchell
Carnegie Mellon University
16.12.2019 M. Wolter, Deep Neural Networks

ils

What does “machine learning” mean?

® Machine learning is a field of computer science that gives computer systems
the ability to "learn” (i.e. progressively improve performance on a specific
task) with data, without being explicitly programmed.

® Problems to which it’s applied:

— Supervised learning (classification & regression)
— Clustering (unsupervised learning)

— Dimensionality reduction
— Reinforcement learning
— Many others....

Original unclustered data Clustered data
6

»Unsupervised Learning

Technique of trying to find hidden structure in
unlabeled data

»Supervise Learning

WTechnique for creating a function from training
data. The training data consist of pairs of input
objects (typically vectors), and desired outputs.

16.12.2019 M. Wolter, Deep Neural Networks

Neural networks

® At the input of each node a weighted sum of inputs is
given. It is transformed by the activation function
(typically sigmoid) and later send to the output.

® How to train the multilayer network? How to tune the
weights in the hidden layers? This problem was
unsolved for a long time...

Hidden layers
ai = Zwij Xj +91 — f(al) ® Solution — Output Layer
- - : backpropagation. An error “+
n(x,w)= f(z w,f(a,)+9) y-f(x,w) is propagated y * Back
=1

TRy

Forward 7
backward through the net "™ gddentayer ot

f(a) using the actual weights Ktieation gation
(,revolution” of '80'ies). H T D

. .] Input Layer
Activation function

16.12.2019 M. Wolter, Deep Neural Networks 5

ils

Machine Learning vs Deep Learning

® Traditional ML (BDT, NN etc) — the scientist finds good, well discriminating
variables (~10), called “features”, and performs classification using them as
inputs for the ML algorithm.

® Deep Learning — thousands or millions of input variables (like pixels of
a photo), the features are automagically extracted during training.
Machine Learning

& & 77

Input Feature extraction Classification Output

Deep Learning

G — 7z — I

Input Feature extraction + Classification Qutput

16.12.2019 M. Wolter, Deep Neural Networks

Deeper network?

Traditional Neural Networks have one or two hidden
layers.

Deep Neural Network: a stack of sequentially trained
auto encoders, which recognize different features
(more complicated in each layer) and automatically
prepare a new representation of data. This is how our
brains are organized.

But how to train such a stack of layers?

Why deep learning

©
O
c
©
=
b
[}
=
[
o

Amount of data

How do data science techniques scale with amount of data?

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-4/
16.12.2019 M. Wolter, Deep Neural Networks

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-4/

ils

Training a Deep Neural Network

® |n the early 2000s, attempts to train deep neural networks were frustrated by
the apparent failure of the well known back-propagation algorithms
(backpropagation, gradient descent). Many researchers claimed NN are
gone, only Support Vector Machines and Boosted Decision Trees should be
used!

® |n 2006, Hinton, Osindero and Teh! first time succeeded in training a deep
neural network by first initializing its parameters sequentially, layer by layer.
Each layer was trained to produce a representation of its inputs that served
as the training data for the next layer. Then the network was tweaked using
gradient descent (standard algorithm).

® There was a common belief that Deep NN training requires careful
initialization of parameters and sophisticated machine learning
algorithms.

'Hinton, G. E., Osindero, S. and Teh, Y., A fast learning algorithm for deep belief nets, Neural Computation
18, 1527-1554.

16.12.2019 M. Wolter, Deep Neural Networks

ils

Training with a brute force

® |In 2010, a surprising counter example to the conventional wisdom was
demonstrated®.

® Deep neural network was trained to classify the handwritten digits in the
MNIST? data set, which comprises 60,000 28 x 28 = 784 pixel images for
training and 10,000 images for testing.

® They showed that a plain DNN with architecture (784, 2500, 2000, 1500,
1000, 500, 10 — HUGE!!), trained using standard stochastic gradient descent
(Minuit on steroids!), outperformed all other methods that had been applied to
the MNIST data set as of 2010. The error rate of this ~12 million parameter
DNN was 35 images out of 10,000.

The training images were randomly and slightly deformed before every
training epoch. The entire set of 60,000 undeformed images could be
used as the validation set during training, since none were used as
training data.

1 Ciresan DC, Meier U, Gambardella LM, Schmidhuber J. ,Deep, big, simple neural nets for handwritten
digit recognition. Neural Comput. 2010 Dec; 22 (12): 3207-20.
2 http:/lyann.lecun.com/exdb/mnist/

16.12.2019 M. Wolter, Deep Neural Networks

http://yann.lecun.com/exdb/mnist/

Why it didn’t work before? ﬂ?

® More data, clusters of GPU/CPU (computing power!)

® The particular non-linear activation function chosen for neurons in a neural
net makes a big impact on performance, and the one often used by default is
not a good choice.

® The old vanishing gradient problem happens, basically, because
backpropagation involves a sequence of multiplications that invariably result
In smaller derivatives for earlier layers: that is, unless weights are chosen with
different scales according to the layer they are in! Making this simple change
results in significant improvements.

B b [P :

m— sigmoid

gl|—thanh | i
——RelU : Dee P NN
—=softplus ; ;]

3 ChOICe

| R e f AT

N

0

5 0 5

16.12.2019 M. Wolter, Deep Neural Networks

DNN - hierarchical feature extraction

Deep neural
networks learn
hierarchical feature 2

representations i) o

hidden layer 1 hidden layer 2 hidden layer 3

o i

T _. £,
i‘\‘f‘hﬁ
O
s

iy el 5

oty e
o wﬁ{ i

2

el g

16.12.2019 M. Wolter, Deep Neural Networks

Hand-writing recognition ﬂ?

MNIST database of hand-written digits.

006002006 QopgpOoOC2 0 OO _ :
VYNV 2 020 N7 ® \Vith small andverySImple MLP
2222932 2229232922 after a short training we got an
3333333353>3333333 accuracy of 98.3%
He +td 4949 #5444 8yH4
558535 SSsFSH5TSS L5859
bebblbcbbbacsédébeel @Networkhasjusttwo hidden layers -
¥ 3 s 8 8 P &8 P T T T &€ 9
74999993%9a409499449799

60000 train samples

10000 test samples

Layer (type) Output Shape Param #
Example: ;ense 7 (Dense) (None, 512) 401920
https://github.com/marcinwolter/DNN e - '
xamples/blob/master/mnist_mlp.ipynb dropout_5 (Dropout) (None, 512) 0

dense 8 (Dense) (None, 512) 262656
S/Ight/y updated example from net. dropout 6 (Dropout) (None, 512) 0

dense 9 (Dense)

Total params: 669,706
Trainable params: 669,706
Non-trainable params: 0

16.12.2019 M. Wolter, Deep Neural Networks

https://github.com/marcinwolter/DNN_examples/blob/master/mnist_mlp.ipynb
https://github.com/marcinwolter/DNN_examples/blob/master/mnist_mlp.ipynb

ils

Automated physicist?

® Use of deep neural network to extract H->tt and SUSY signals in simulated
CMS data'>.

ARTICLE

Received 19 Feb 2014 | Accepted 4 Jun 2014 | Published 2 Jul 2014 'DOI: 10.1038/ncomms5308

Searching for exotic particles in high-energy
physics with deep learning

P. Baldi'!, P. Sadowski! & D. Whiteson?

1 P. Baldi, P. Sadowski, D. Whiteson, Searching for Exotic Particles in High-Energy Physics
with Deep Learning, Nature Commun. 5 (2014) 4308

2 p. Baldi, P. Sadowski, D. Whiteson, Enhanced Higgs Boson to 1t Search with Deep
Learning, PRL 114, 111801 (2015)

16.12.2019 M. Wolter, Deep Neural Networks

H->T T searches

® | ow-level variables — 22, here just few are shown

a b e f
0.2 T T . 0.2 T T T 0.2 T . . 02 , , r
W 72} §] (7}
€ 0.15F . € 015} . c 0151 = £ 015} -
o @ o . [
= = = =
() @ o @
S 01} - S 01 S 01 ° i k) i
o =y c H =
S S S 5
S 3] k3] S
© @ © @
= o0.05} £ 005 £ 0.05F 1 &g _
0 0 0 1 I o
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Jet 1 pr (GeV) Jet 2 pr (GeV) Lepton pr (GeV) Missing trans. mom (GeV)
c d Figure 2 | Low-level input features for Higgs benchmark. Distributions in
0.2 T T T ' ' ' ¢vjjbb events for simulated signal (black) and background (red) benchmark
0oL .- events. Shown are the distributions of transverse momenta (p1) of each
oW L N . . .
€ 0.15- - . o observed particle (a-e) as well as the imbalance of momentum in the
2 S 0151 4 final state (f). Momentum angular information for each observed particle is
S 01l i & also available to the network, but is not shown, as the one-dimensional
g © 01+ _
S c projections have little information.
Q o
< i)
S 0.05F 1 Boost :
L
0 1 1 0 I '
0 50 100 150 200 0 50 100 150 200
Jet 3 p; (GeV) Jet 4 p; (GeV)

16.12.2019 M. Wolter, Deep Neural Networks

® Physicists have built 7 well discriminating high-level variables (derived from

Higgs search

22 low level variables).

a b e f

0.3F T T T = T T T T T T 03F T

0.2} -
@ I @ ‘. @ 0.2 1 e
- o - = c
L 02k - o 015} e _] S i
3 3 v 2 g 02
‘5 5 5 B
c c 01} - c c
S S S 0.1 -- {4 8
T 01+ 4 6 G - B 01}
o] (] ©
b = & 0.05| 4 T . i
0 1 I 0 - I 1 I 0 L | - [== 0 I
0 50 100 150 200 50 100 150 200 250 300 100 200 300 400 0 200 400 600 800 1,000
m,; (GeV) m;; (GeV) mps (GeV) muws (GeV)

c d

04 T T T T T 02 T T T g T T
" m o 02 o
£ 03f 1 EO015F] 4 c
3 S o 3 0.15 _
5 £ - S

0.2} g 0.1} 4
§ 5 S o .
S 8] 8
F o1k 4 xToo05F | - % 0.05 .

0 | | | 0 I | N | | | et Y
76 78 80 82 84 100 200 300 400 200 400 600 800 1,000
me, (GeV) M, (GeV) mwss (GeV)

Figure 3 | High-level input features for Higgs benchmark. Distributions in
simulation of invariant mass calculations in £vjjbb events for simulated
signal (black) and background (red) events.

16.12.2019

M. Wolter, Deep Neural Networks

. Low level - 22 variables iﬁ
High level ' - 7 variables -

Higgs searches 1
99 |
® Data: 2 600 000 events for training, s °°r]
- : o 0.7 -
100 000 for validation @
2 06 |
: 3
® Deep NN: 5 layers, 300 nodes in 5 o5} 4
©
each layer, fully connected @ 0.4 —— NN lo+hi-level (AUC=0.81) .
ia e NN hi-level (AUC=0.78) _
Table 1 | Performance for Higgs benchmark. gl N lplevel(AUE=0.70) .
| | |]]
. . 0 0.2 0.4 0.6 0.8 1
Technique Low-level High-level Complete Skl sidaneT
AUC
BDT 0.73 (0.01) 0.78 (0.01) 0.81 (0.01) b : :
NN 0.733 (0.007) 0.777 (0.001) 0.816 (0.004) N — .
DN 0.880 (0.001) 0.800 (<0.001) 0.885 (0.002) R
Discovery significance 0.8 -) 5
NN 250 310 370 S N %
DN 4.9¢ 3.60 5.0 8 o6l _
-
Comparison of the performance of several learning techniques: boosted decision trees (BDT), Igj
shallow neural networks (NN), and deep neural networks (DN) for three sets of input features: % 04— -
low-level features, high-level features and the complete set of features. Each neural network was =z
trained five times with different random initializations. The table displays the mean area under o i _ i
the curve (AUC) of the signal-rejection curve in Fig. 7, with s.d. in parentheses as well as the = i (A B Jorkhisenchia1e=0.0) W
expected significance of a discovery (in units of Gaussian ¢) for 100 signal events and ST e DN lo-level (AUC=0.88)
1,000 £ 50 background events.
ol T DN hi-level (AUC=0.80)
| | | | |
. 0 0.2 0.4 0.6 0.8 1

16.12.2019 M. Wolter, Deep Neural Networks

doi:10.1038/ncomms5308

Convolutional Neural Network
for pattern recognition

Example: 1000x1000 image
IM hidden units
‘ 1B parametersl!!

Many connections... How to simplify the deep
neural network?

16.12.2019 M. Wolter, Deep Neural Networks

ils

Convolutional NN

Example: 1000x1000 image

IM hidden units

Filter size: 10x10
10M parameters

Just connect only local areas, for
example 10x10 pixels.

Huge reduction of the number of
arn multiple filters. p@rameters!

The same features might be found in
different places => so we could train
fg: 10000000 mee — many filters, each recognizing another

Filtengzs: 1040 feature, and move them over the
parameter -
picture.

LeCun et al. “Gradient-based learning applied to document recognition” IEEE 1998

16.12.2019 M. Wolter, Deep Neural Networks

ils

Example of pattern recognition
Top 9 patches that actlvate each filter

| M | hER
in layer 1 i S ik
A NN

AR

= BN ane
| i
-
; o Ll

LR
N
mumn

Each 3x3 block shows
the top 9 patches for
one filter.

[T

* Bk B

-
- -

TP ! FRALA N |
alk A48 m=r

=N =N A

16.12.2019 M. Wolter, Deep Neural Networks

2 o I’lll" \\

-

| Hdi!
_ ._ Q'Pa’[(}hI'SInE‘ 17
Sk v add IIE’- PV will - _EE

.’ ' '___,. e el 4 4 ﬂﬂ*‘ e =

1200
I |1 ;
T 4

N
- |

i

w3 [0 e @ AT PP fnml‘n“EEl _ 4

'r'-:_hc il L)
= LR m.l

A
s 2 SN
v 2L8Y lbl] J‘J-‘/“”’"
!_A‘ “lg’}u.} I ® -

@B N
_nnM-rr |
| q--—

16.12.2019 M. Wolter, Deep Neural Networks

B v T R]
W4~ CHER A

== y.¥ QL)
o CCE B

fy g johis
! | 4 ¢ _b_ Sy ks N’ :
) 11_:9.-__-": "'a.."'_:". ".""-

Lﬁﬂi_.g‘ ”“’Hl‘ Hg’"‘“"n
j‘j &\ﬁ

16.12.2019 M. Wolter, Deep Neural Networks 21

- g;'_h
f‘ o P 5 % . _- &= 3_‘ ..;‘- -
n | 4. Vi) s ez
#1 :.-' ¥y -.' ! W

8%

\B: |
W am

VZ
ok
N
'

16.12.2019 M. Wolter, Deep Neural Networks 22

= oy . -
= JI- b
- & i L]
| ‘ - -
=, 5. . AELey '™ =l
: ’ L P ey
1 Y Y
i & [— —
| ‘_': 3
pe ~ o
1) ' .
i‘ . " Fa 1
o, v y | -
-]
¢
LI ¥ rl

16.12.2019 M. Wolter, Deep Neural Networks 23

ifs

Pooling

Pooling — (in most cases max
pooling) the group of outputs for a
larger input area is replaced by a
maximum (or average) for this given
area:

» Data reduction,

* Lower sensitivity for the position of a
given feature.

Single depth slice
1 o 2 3

/I

4 6 6 8
3 1 1 0 3
1 2 2 4

W

12.07.2018 M. Wolter 24

Quick test of hand-writing recognition ‘ﬂ?

® \With CNN we got after a short

MNIST database of hand-written digits. o
training an accuracy of 99.21%

00000060 p0OOo 0OY

' ® Our CNN neural net (small

comparing to the winning nets):

https://github.com/marcinwolter/DN
N_examples/blob/master/mnist_cnn.

Ipynb
Slightly updated example from net.

DAY ppnNnLuwh N0
PR VS N
QAN LAY
KR DR NN

SaNN®HHYTWPND

L swJdgAzxWH»~=0Q

¢
\

A
3

le

5
6
7
g
C[‘

VA HLWN~
ARS N b~
Ly LWV~
DS G QU N~
D oud oAl oy —
Do NSO L b~
SLHEY oW~

I\
2 2
3 3
4 4
Y
< ¢
77
' s
% 4

11 ‘1 cl OPERATION DATA DIMENSIONS WEIGHTS(N) WEIGHTS(%)
Input ##### 28 28 1
Conv2D N/ e 320 0.0%
iki 12)- relu ##### 26 26 32
Best results (Wikipedia): Sy N e R lsas6 1.0%
relu ##### 24 24 64
MaxPooling2D Y max ------------------- 0 0.0%
Deep neural network 6-layer 784-2500-2000-1500-1000-500-10 0.35(23] R 12 12 64
Dropout | || ===r=mrmmmmemennn- 0 0.0%
HtH 12 12 64
Convolutional neural network 6-layer 784-40-80-500-1000-2000-10 0.31[15] Flatten [1]]] ====----mmmmmmmemnn 0 0.0%
Ht#H# 9216
Dense XXXXX --------mmmmonnaonn 1179776 98.0%
Convolutional neural network 6-layer 784-50-100-500-1000-10-10 0.27116] relu ##### 128
Dropout | || ==semmmseicanainaion 0 0.0%
HHHH# 128
Convolutional neural network Committee of 35 CNNs, 1-20-P-40-P-150-10 0.2318l Dense XXXXX -----cemommmnanann- 1290 0.0%
softmax ##### 10
[frain on 60000 samples, validate on 10000 samples
Convolutional neural network Committee of 5 CNNs, 6-layer 784-50-100-500-1000-10-10 0.21[17]
Random Multimodel Deep Learning 30 Random Deep Leaning (RDL) models (10 CNNs, 10 RNNs, 0.18241
(RMDL) and 10 DNN) '
16.12.2019 M. Wolter, Deep Neural Networks 25

https://github.com/marcinwolter/DNN_examples/blob/master/mnist_cnn.ipynb
https://github.com/marcinwolter/DNN_examples/blob/master/mnist_cnn.ipynb
https://github.com/marcinwolter/DNN_examples/blob/master/mnist_cnn.ipynb

Figure recognition

triangle square
g fr ek
Y T

; Fwia ik
ST gl
triangle circle
E - -, '\.l-.:,:
e b A
O
gt ol | e
. .l_-.:_. .ﬁ{:'-"l
riangle gircle
g iy -
= -.;,:-‘_. o
'%E-?%—l'\i: i
R e e 3000
Fan i ' e
square circle
A LT
1 T .
A 2400
R y
triangle circle square
s ' g F i 1800
;3%;!1' F.; Vs ; : B i
:-;: T 1 _l.:'::_._-' - oy Il'l_: AR -|;:|
AR TR T e
circle circle triangle square 1200
i B M il FINE-TH] - - == " l-'\.--lqi_
A kg i gl o2
: R 1
1]
Rl ok
T e 500
0

® Qualification project for IFJ PAN Ph.D. students

® https://github.com/marcinwolter/DNN_examples/blob/master/figure_cnn.ipynb

16.12.2019 M. Wolter, Deep Neural Networks

https://github.com/marcinwolter/DNN_examples/blob/master/figure_cnn.ipynb

CIFAR image classification
Bonus example

® Classifies images into 10 classes

Very nice and advanced example, uses data
augmentation (artificial replication)

runs on google Graphic Processor Units (GPU)

oF R
mE FH s

0
Pl J 1 A 1 i
LA TS R

gn a0 0 fs o U
Ml =5)
y [— oy 0 automaobile 1 a00
EE e ENN ira |
0 Gt D i cat 1
42 2 300
nd.” \E’ Al i e
0 s 2 i —— U]
E=D ESEE S S - 200
a A] . ¥] A0 horse -
Example: cifar_classifier_gpu_aug.ipynb i - -100
Source from net: ek 1

https://colab.research.google.com/drive/1zTYNJ3xtPeNsaS5ARBw4Ufj8crPZJx-cp

https://github.com/marcinwolter/DNN_examples/blob/master/ci
far classifier gpu aug.ipynb Predicted label

16.12.2019 M. Wolter, Deep Neural Networks

https://colab.research.google.com/drive/1zTYNJ3xtPeNsa5ARBw4Ufj8crPZJx-cp
https://github.com/marcinwolter/DNN_examples/blob/master/cifar_classifier_gpu_aug.ipynb
https://github.com/marcinwolter/DNN_examples/blob/master/cifar_classifier_gpu_aug.ipynb

ils

CNNs - quark-gluon jet classification

ATL-PHYS-PUB-2017-017

ATLAS Simulation Preliminary : ; o o = 2 —r— e B
Anti-k, R=0.4, 150 GeV <pr <200 GeV g L AAE. | A1) B I

= g T[EwrrerI t'.:lcmls.t|[tu.?mutls1 e E ATLAS Simulation Preliminary

2 F .) 100‘_" 15/_=‘13TEU |

5 o v W Anti-k, EM+JES R=0.4]

o T =T : Inl<2.1, 150 GeV <pr <200 GeV -

= - e N ATL-PHYS-PUB-2017-017 |

O 5t = S ~.

© =) .

5 = B g

o o |

a8

E 1058 -

ol = CNMN EM Towers + Tr.

D =+==: LLH {# Charged F"arlh{

— -+ # Charged Particles

< 1.0F= " Jetwidth

I: 15 1 | | | | 1 | [| I | l 1 | .0 S IU 5| L Iﬂle U? LUB 09 1 D
0 7] 10 15 ' g : : ' y

Translated Azimuthal Angle ¢ Quark Jet Efficiency

Per pixel correlation between image
intensity and CNN output.

The four pixels at the core is highly

correlated with jet being a quark jet

“The image-based approach described in this note is a promising
avenue for future research to confront a variety of tagging challenges.”

CNN as an entirely different approach than
building likelihood from high level quantities show
improvement of quark vs. gluon classification

16.12.2019 M. Wolter, Deep Neural Networks

https://cds.cern.ch/record/2275641

ils
Example of CNN effort

From ATLAS-CONF-2016-057:

ATLAS search for R-parity-violating SUSY gluino decays

Analysis from ATLAS-CONF-2016-057 used as a benchmark

25 AntiKt R=1.0 trimmed
algorithm used in the
standard analysis. e

g
(=]

Cluster energy [Log{MeV)]

=
LA

CNN outperforms other ML classifiers

1.0

=
=]

=
]

=

=
o
@

o
o

True Positive Rate

0.4
- ﬂ ﬁ 0.2 —— GBDT
(e, f —— MLP
‘ é% . ® Physics Selections

0.0 . ; ; .
fpn. iemiindll: ahoan comwponls conwpoold fe1 fe2 output 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

1x227%227 B4x113x113 128x54x54 128x27%27 128x13x13 1024x1024 1024x2 2 Gy
False Positive Rate

https://indico.cern.ch/event/567550/contributions/2629673/attachments/1510135/2355667/ACAT-DeepNetworksForPhysicsAnalysis-1.pptx

16.12.2019 M. Wolter, Deep Neural Networks

http://cds.cern.ch/record/2206149
https://indico.cern.ch/event/567550/contributions/2629673/attachments/1510135/2355667/ACAT-DeepNetworksForPhysicsAnalysis-1.pptx

How could we get rid of simulated data?ﬂ?
Great problem, at least in physics

® The Monte Carlo simulation used for training Machine Learning methods
always differs to some extend from data.

® So, the best would be to train algorithms on data...
® .. =>towards unsupervised learning?

® ... or maybe only weakly supervised?

" UNSUPERVISED | : 7
LEARNING sy | CLUSTERING

Group and interpret
data _bmud anly ‘
. "-./ . on input data i))
MACHINE LEARNING) . CLASSIFICATION
SUPERVISED | |
LEARNING |)

-

Develop predictive
model bosed on both
input ond oufput data |

’

‘ REGRESSION

Unsupervised learning:

No training datasets are provided, the data is clustered into different classes
based on similarity.

12.07.2018 M. Wolter 30

Weakly Supervised Classification

® A new approach in Machine Learning: weakly supervised classification in
which class proportions are the only input into the machine learning

algorithm.

® Example problem from particle physics:

— Quark versus gluon tagging - weakly supervised classification can
match the performance of fully supervised algorithms.

— By design, the new algorithm is insensitive of MC mis-modelling — trained

on data.

® Problem: we have to
find in data what is the
proportion of gluon and
guark jets.

® Maybe template fits in
one/some variable/s
using again MC?

arxXiv:1702.00414

12.07.2018

1.0

= < =
= = oo

True Positive Rate

<
[\

M. Wolter

Weakly supervised NN, AUC=0.93
Fully supervised NN, AUC=0.93
Feature 1, auc=0.77
Feature 2, auc=0.70
Feature 3, auc=0.78
Feature 4, auc=0.78
Feature 5, auc=0.71

0,%"'

0.4

0.6 0.8 1.0

False Positive Rate

ils

31

arxiv:1702.00414

Learning from Data ﬂ?
Classification w/o Labeling

® A step even further is Mixed Sample 1 Mixed Sample 2
classification w/o labeling (
(CWolLa)
https://arxiv.org/abs/1708.02949

® A classifier is trained to
distinguish sample 1 from
sample 2, which are mixtures of
signal and background with \
different (and unknown)
fractions.

® Such a classifier is optimal for
distinguishing signal from Classifier
background

12.07.2018 M. Wolter 32

https://arxiv.org/abs/1708.02949

ils

Bayesian learning

® All regression tools (neural networks, decision trees...) described here were
returning the most probable output value.

® But a better thing is....

— Probability distribution

12.07.2018 M. Wolter 33

B

Machine vs. Bayesian learning

i Maximum
LT LI A I I L L I = 018;@@\1‘-’}.- T | =
0.16 - 4 o1eF =
0.14;— —; 0.14;— _;
012 —; 012 —;
0.1 E 0.1 E
008 IChosen ER E
0055 [valuew E 0-06 F
0.04:— e 03{1’\5 =
0.02F - (? 2F —
|1 AP P S S U B S B e 0:'Y||:
-2 0 2 4 6 8 10 12 14 -2 0 2 4 6 8 10 12 14
parametr W parametr W
Machine learning Bayesian learning
We chose just one value of a Each value of a parameter (or
parameter (or just one function). function) has a given probability.
12.07.2018 M. Wolter 34

Implementation: Bayesian Neural
Networks

Instead of one use many
neural networks.

Having many networks we can
get the probability distribution. X

Yu

;<(<|
ll

~.DQ4
=

C.M. Bishop
“Neural Networks for Pattern Recognition”,

Oxford 1995

Free software (used by DO Collaboration):
Radford Neal, http://www.cs.toronto.edu/~radford/fbm.software.html

M. Wolter 35

12.07.2018

http://www.cs.toronto.edu/~radford/fbm.software.html

Example of BNN

How does the 8-node, 1-hidden layer BNN works?
y=0.3+0.4x+0.5sin(2.7x)+1.1/(1+x*) _

* Data generated from function:
with gaussian noise with ©=0.1

* 400 neural networks, distribution => median and 10% Qnt i 90% Qnt

=
b=

* Gal and Ghahramani (U. of Cambridge)* demonstrated that a DNN, in
which nodes are randomly dropped during training (a procedure referred
as dropout), approximates variational inference in Bayesian neural

networks.

)_ -1 T 11T [TTT T [TTTT] L [TTrTT | TT 11 L[T T 1 [TTT 1T I TT T] T [_ >_ _T L [TTrr1rr [TTrrr] LI [TTT T | TTrrir] TTTT [TTT1T I TTr T I TT1]

2 2 -

1.5F- 1.5F -

1 - 1F =

0.5F . 0.5 .

0 - O~ -

-0 _I 11 | | I | [| T I | | | I | | | I | I | I | | L i1 | 1111 l | I | | 111 |: -0 _I 111 | | I | [111 | | I | | | I | I | I | | | I | | L1 11 l) I | | L 11 I_
'3.5 2 -15 -1 05 0 05 1 1.5 2 25 '3.5 2 -15 -1 05 0 05 1 1.5 2 25

LY. Gal and Z. Ghahramani, Dropout as a Bayesian Approximation: Representing Model Uncerfainty
in Deep Learning, arXiv:1506.02142v5, 25 May 2016

12.07.2018

M. Wolter

36

ils

Mixture Density Network (MDN)

Ways to treat data:
data

Point Estimate Parametric Distribution Empirical Distribution
Fa : lmhl
. Calculation efficient and stable . Calculation relatively efficient . Flexible: No assumptions
. Analytical Representation . Can be sampled (more or less)

“ Uncertainty not accounted for . Can be sampled
“ Cannot be sampled " Breaks down for higher
“ Assumption that point estimate is “ Breaks down if assumption on dimensional data
representative: e.g. Failure with multi- § class of distribution is not correct “ High memory consumption
modality “ Hard to represent multi-modality " Artifacts due to discretization
Classic Neural Network Mixture Density Neural Bayesian Networks???

Network

12.07.2018 M. Wolter 37

ils

Mixture Density Network (MDN)

® MDN is an interesting model formalism working on supervised learning
problems in which the target variable cannot be easily approximated by a single
standard probability distribution.

® Conditional probability distribution p(y|x) is modeled as a mixture of distributions
(few Gaussians), in which the individual distributions and the corresponding
mixture coefficients are parametrized by functions of the inputs x.

Regression:

Regular network - OK Regular network - MDN sampling - OK
, : problems
Nice presentation:

http://www.dbs.ifi.Imu.de/Lehre/DLAI/WS18-19/script/06 _uncertain.pdf
16.12.2019 M. Wolter, Deep Neural Networks

http://www.dbs.ifi.lmu.de/Lehre/DLAI/WS18-19/script/06_uncertain.pdf

ils

Mixture Density Network (MDN)

K_L\
o WA -
iy

: standard deviations

Al |/l Ql

: means
X Neural Network T MiXIUrS ey : cluster weights
Density
Loss: —log P(Y|X)
= MDN:

overcome the limits by using a
linear combination of kerne
function

MDN return not only maximum probability value, but the probability distribution:
returns errors!

Example from https://github.com/cpmpercussion/keras-mdn-layer
Google Colaboratory runable adapted example:

htgps://github.com/marcinwolter/DN N_examples/blob/master/MDN_1D sine prediction.ipy
n

Reference: Bishop, Christopher M. Mixture density networks. Technical Report
NCRG/4288,Aston University, Birmingham, UK, 1994

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.5685&rep=repl&type=pdf

16.12.2019 M. Wolter, Deep Neural Networks 39

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.5685&rep=rep1&type=pdf
https://github.com/cpmpercussion/keras-mdn-layer
https://github.com/marcinwolter/DNN_examples/blob/master/MDN_1D_sine_prediction.ipynb
https://github.com/marcinwolter/DNN_examples/blob/master/MDN_1D_sine_prediction.ipynb

MDM example

- ATLAS cluster position calculation

Currently uses a three-step process

1. Number Network: Determine the number of particles in this hit
2. Position Network: Determine the x-y position of each particle
3. Error Network: Estimate the errorin x and y for each particle

-

(urre nt System Replaced in new algorithm
Outgoing -
partiches ol
et
Layer 3 y
- Yy P
- o § '\'\S\\‘.
— T Layor 2
2-particle{clusters %Y
_—
Layer 1 N
i, 11 2
Number g e e—
Network \
D
. Layer 0 .
m o " (1BL) ~ 5y
- T
o Position
tincident angle, Networks Error
. layer, region Networks
Robin Newhouse
= 0.22— A e B T e - R . aas A ananananas Rass
B o~ ATLAS Simulation Preliminary p B @ - ATLAS Simulation Preliminary
2 E e —+— 2D Gaussian Kermel | @ |3 " i
0,18 PYTHIAR dijet, 1.8 < p' <25 Tev b= 003, me = 100] T .1 PYTHIAB dijet, 18 < p" <25 Tev
@ = 1-particle clusters = 2 I 2-particle clusters
2 016 local ¥ direction L =2 [local X direction
Lol T | =000 e =141 & 0.081— pixet barre! clusters

| {without IBL)

Ll

0.12C

0.1=
0.08-
0.06-
0.04_—
0.02—
0g=

1 particle err.

0.061
E 0.04|
0.02]

86570.04-0.03-0.02-0.01 0

2 particle pos.

Truth hit pull

16.12.2019

MDN: Feedforward network +
Gaussian kernel(s)

Output of the
feed-forward
network

Feed-forward Network Output Layer

2D Gaussian Kernel (s)

1 kernel

1-pa rticle clusters
2 kernels

./.\\ /.\\

2-particle clusters
3 kernels

S LA TN

3-particle clusters

ATLAS studies of Elham E Khoda:

https://indico.cern.ch/event/795039/contributions/3432383/attach
ments/1856640/3049881/Machine_Learning_in_CTIDE_1.pdf

= T B o B O B R e
i ‘@ gpg[ATLAS Simulation Preliminary s
—+— 20 Gaussian Kernel @ = ” —+— 2D Gausslan Kernel]
po= 007 pm, mma = 13.8 pm o 0.070 PYTHIAS dijet, 1.8 < p_ < 2.5 TeV Ji o= 004 ym, M = 172 pm
@ Y7L 3-particle clusters
e, 13 oiXaen . .
o= 26T pm, ms = 164 pm o . o 170 pm, rms = 232 pm
o | Pixel endcap clusters ..
] 0.05
0.041
0.03[
5| 0.020
E J
0.01 Mﬂ’

i il ol bovaalonan oo losaaloveelaiay
—8,05—0.04—0.03—0.02—0.01 0 0.01 0.02 0.03 0.04 0.05
3 pa rticle pos' Truth hit residual [mm]

0.01 0.02 0.03 0.04 0.05
Truth hit residual [mm]

M. Wolter, Deep Neural Networks

https://indico.cern.ch/event/795039/contributions/3432383/attachments/1856640/3049881/Machine_Learning_in_CTIDE_1.pdf
https://indico.cern.ch/event/795039/contributions/3432383/attachments/1856640/3049881/Machine_Learning_in_CTIDE_1.pdf

Pattern Recognition
in High Energy Physics

— O e e O —_—
o O ——C -~ - — . T —. —
) e . e) e e) .
D > <> D D O =) Cr = <
) e st e e e e e =
O - > Particle s parameters '.—
B | (a/p.Jambda,phi,d0,dz) |

|
|

u

\ ——— s J\ B
Seeding Track Building Track Fitting
® Track seeding — finding the seeds (initial sets of hits) from which the track
starts

® Track building = pattern recognition HEP jargon

— Creating a 2- and 3-dimensional lines and assigning to them all the hits
within a certain window

— Fitted frequently with “robust fit”
® Track fitting — final fitting of the track parameters (usually a Kalman filter
used for tracking)
Usually this method works fine, is robust and efficient!

12.07.2018 M. Wolter 41

So, where is the problem? ﬂ?

® The time needed to process one event
grows quickly (worse than quadratic)

;; - CMS Simulation, 15 = 13 TeV, it + PU, BX=25ns . with luminosity (number of collisions).
€ go ™ Full Reco Current—=— Track Reco Current | _]
€ "1 - FulRecoRunt — TrackRecoRun1 | @ Huge partof CPU consumption is the
“zg 5o PU140 - track finding.
a | Deep Neural Network (DNN)?
40— -
i 1 @ Fast, parallel, in principle does pattern
300 - recognition “at once”, without looping
i 1 over hits.
20 . . .
i 1 @ Also experiments with lower occupancy
1o UG B might profit from DNN'’s — higher
L pU2s g i precision and efficiency.
G ,;/:laﬁ 5 s ® There is a HEPTrkx group working on
Luminosity [10** cmr? s°1] tracking for HEP experiments:

https://heptrkx.github.io/

CMS experiment simulation
J.-R. Vlimant, Machine Learning for Charged
Particle Tracking, MIT, 2018

12.07.2018 M. Wolter 42

https://heptrkx.github.io/

Tracking in 2D toy model 4l

® CNN returns track parameters (regression)
® \What about many tracks?
— Solution: add Mixture Density Network(MDN) layer to process many
tracks.
— Straight tracks — described by two parameters. Each parameter has
associated MDN Gaussian
— If a number of tracks lower than expected some MDN outputs have
very low amplitude.
— Important - we are getting errors of track parameters

25 A

: . - Track described by to
Peeooeesennennnee interception parameters
b . b b, and b,.

0 5 10 15 20 %
Z (depth)

16.12.2019 M. Wolter, Deep Neural Networks

Mixed Density Network

Noise probability = 0.1
Input — Reshape — Conv2D [—# Conv2D f— . .
25
20 1 = . .
| Conv2D |— MaxPooling2D —f Conv2D Noise 10% - "
15 1 - - -
h_"‘—‘—‘—:-—L.*__

Conv2D (— Conv2D — Dropout — Flatten

5
|—. 0 T T T T T
Dense —» Dense —# MDN |— Output . : 3 - = =2
Z (depth)
Noise probability = 0.2 Noise probability = 0.3
254 B : - : g : - L : : - - . i . : 25- - " : :) : : : ’ "
20 1 2 : S : % - £ . : 1 . . i : x zﬂ- L .] - e e e e - ["
e o «. e r Pt —.__'_. :-_ _I L] - : -
15 4 . - 2 g . e LI I . 15 1) - : " = - = -_'l:.__:—-—::'-_-:_-%-_.-_j-;—_-—:._.___
llllllll - - - . = _l B L] L] B & W]
L e T ”____]__...l-—: - . _.____- S L]
10 P 5 e G o wqi "
S— " - L - - & - - = : - : - 5_
0 - - - i - . : : - - . D - ; ; ; - -
0 E 10 15 20 25 0 5 10 15 20 25
Z (depth) Z [depth)

Designed by Karol Biatas and Mateusz Stysz summer students at IFJ
https://github.com/marcinwolter/DNN_examples/blob/master/dnn_tracking_2D_mdn_multimod.

16 12.2019 M. Wolter, Deep Neural Networks

https://github.com/marcinwolter/DNN_examples/blob/master/dnn_tracking_2D_mdn_multimod.ipynb
https://github.com/marcinwolter/DNN_examples/blob/master/dnn_tracking_2D_mdn_multimod.ipynb

ifs

MDN Tracking - error estimation

by: tg = 0.24, 05 = 0.83 _ by: Ug = -0.30, g6 = 0.79 Pull plots have a
= width not far from 1.
Noise 10%

If a random variable x is
generated repeatedly with a
Gaussian than the pull

B
8

! whis g Ty B PP b distribution:
%WWM»&—M% °| o
h 3 : : 7 ; — 2 : ; I &= i
g —
b]i Hg =-0.27, o = 0.87 bz: Hg = 0.03, o = 0.94 O-
i | will be distributed as a
. standard Gaussian with
= Noise 30% o
" mean zero and unit width.
5 }
TTTNPRL A LANY BRILAT Bt bbbt o it +++m
: '?++*+T++ Py ++++ e MEERAME Y 2y Ay AT

4

16.12.2019 M. Wolter, Deep Neural Networks

ils

Generative Adversarial Nets (GANS)

® GANSs were introduced lan Goodfellow and others in 2014 . Yann LeCun
called adversarial training “the most interesting idea in the last 10 years in
ML.” https://arxiv.org/abs/1406.2661

® GANS’ can learn to mimic any distribution of data. They can be taught to
create worlds similar to our own in any domain: images, music, speech,
prose. They are robot artists!

16.12.2019 M. Wolter, Deep Neural Networks

https://arxiv.org/abs/1406.2661

ils

How do GANs work?

® Discriminative algorithms - classify input data; given the features, they
predict a label or category to which that data belongs (signal or background)

® Generative algorithms — do the opposite, assuming the event is signal, how
likely are these features?

® Another way to distinguish discriminative from generative like this:

— Discriminative models learn the boundary between classes
— Generative models model the distribution of individual classes

Discriminative Generative
+ @ @
Y] @
% . . .
o N
@ W 0 .. . ' . .
p l"“‘i LY =
o o
e 0 O e @
1| |_ N . .
= - ‘1 ‘ _:' .

16.12.2019 M. Wolter, Deep Neural Networks

ils

Blind forger and detective

D: Detective

R: Real Data G: Generator (Forger) I: Input for Generator

The forger has never seen Mona Lisa, but gets the judgments of detective
and tries to fool him (i.e. paint something that looks like Mona Lisa).

They both (forger and detective) have to train in parallel (important), since if
detective is to clever the forger will never paint anything acceptable.

16.12.2019 M. Wolter, Deep Neural Networks

ils

GANs example — hand-written digits

Training set

Random
noise

N

Generator

AR

Discriminator

L {Fa ke

vy

Fake image

® Training set — MNIST: hand-written digits supplied by US post.

® Discriminator — convolutional neural network labeling images as real or fake.

® Generator - inverse convolutional network (while a standard convolutional
classifier takes an image and downsamples it to produce a probability, the
generator takes a vector of random noise and upsamples it to an image).

Implementation: Python code using Keras interface and TensorFlow backend.

16.12.2019 M. Wolter, Deep Neural Networks

2400 cycles 8000 cycles 19900 cycles
Each cycle digits look more and more realistic.

Updated code from the net:
https://github.com/marcinwolter/DNN__examples/blob/master/gan_generate_letters.ipynb

16.12.2019 M. Wolter, Deep Neural Networks

https://github.com/marcinwolter/DNN_examples/blob/master/gan_generate_letters.ipynb

Conclusions
® Many new methods were developed recently. Artificial

® Machine Learning approach becomes to be iFIl'EHigEFII:E
used not only for classification, but also for

other tasks. is no match far

natural
stupidity.

® Each month new application appear!

® The development is driven by Al applications (image
recognition, autonomous cars etc). But the physics
community can profit!

® More and more advanced ML techniques have application in
HEP. Try to find a new one!

16.12.2019 M. Wolter, Deep Neural Networks

-;?:I
&)
115 I

LS ————

$432,50'_'_"_0 at an auction!

"Edmond de Belamy" is part of a fictitious family created by a "generative adversarial
network," of which there's ten other paintings. "Edmond" is one of the most striking of the
paintings, and will likely become an important part of art history going forward thanks to its
huge selling price. The generator behind the painting created new portraits based on 15,000
from the last 600 years, taking existing art and crafting something wholly original and quite
alien.

16.12.2019 M. Wolter, Deep Neural Networks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 53
	Slide 54

