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Github repository

https://github.com/marcinwolter/ANOVA_2019

Some python examples (just a reminder)

https://github.com/marcinwolter/ANOVA_2019
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Last lecture - PCA

●Suppose we have a population measured on p random variables 
X1,…,Xp. 

●Goal: a new set of p axes (linear combinations of the original p 
axes) in the directions of greatest variability:

● PCA is sensitive to the scaling of the variables.

PRINCIPAL 
COMPONENT 
ANALYSIS
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Classification

● In statistics, classification is the problem of identifying to which of a set of 
categories a new observation belongs, on the basis of a training set of data 
containing observations whose category membership is known. 

● Classification is an example of pattern recognition. 

● Example: assigning a given email to the "spam" or "non-spam" class, and 
assigning a diagnosis to a given patient based on observed characteristics of 
the patient (sex, blood pressure, presence or absence of certain symptoms, 
etc.). 
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Classification is a part of Machine Learning

● Machine learning is a field of computer science that gives computer systems 
the ability to "learn" (i.e. progressively improve performance on a specific 
task) with data, without being explicitly programmed.

● Problems:

– Supervised learning (classification & regression)

– Clustering (unsupervised learning)

– Dimensionality reduction

– Reinforcement learning

– Many others….
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● We need  training data, for which we know the correct 
answer, whether it’s a signal or background. We divide 
the data into two samples: training and test.

● We find the best function f(x) which describes the 
probability, that a given event belongs to the class 
“signal”. This is done by minimizing the loss function (for 
example χ2).

● Different algorithms differ by: the class of function used 
as f(x) (linear, non-linear etc), loss function and the way 
it’s minimized.

● All these algorithms try to approximate the unknown 
Bayessian Decisive Function (BDF) relying on the finit 
training sample. 

BDF -an ideal classification function given by the unknown 
probability densities of signal and background. 

How do the (supervised) machine 
learning algorithms work?

Binary classification
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Overtraining

Correct

Overtraining

● Overtraining – algorithm “learns” the particular events, not the 
rules.

● This effect important for all ML algorithms.
● Remedy – checking with another, independent dataset.

test

training

STOP

Example of using Neural 
Network.

Training sample

Test sample
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A Bayes classifier (optimal classifier):

where S is associated with y = 1 and B with y = 0. Bayes classifier accepts 
events x if p(S|x) > cut as belonging to S.

We need to approximate probability distributions P(x|S) and P(x|B).
● If your goal is to classify objects with the fewest errors, then the Bayes 

classifier is the optimal solution. 
● Consequently, if you have a classifier known to be close to the Bayes 

limit, then any other classifier, however sophisticated, can at best be 
only marginally better than the one you have.

– =>If your problem is linear you don't gain anything by using 
sophisticated Neural Network

● All classification methods, such as all we will be talking about, are 
different numerical approximations of  the Bayes classifier.

Classification

p(S∣x)=
p( x∣S) p(S)

p(x∣S) p(S)+ p(x∣B) p(B)
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Types of algorithms 

Linear
(fast and stable)

Non-linear
(most effective)

Simple cuts
(easy and intuitive)

H1

H0
x1

x2 H1

H0

x1

x2 H1

H0

x1

x2

How to use the information available

Classification: find a function f(x1,x2) giving the probability, that a given data point 
belongs to a given class (signal vs background).

Regression: fit a continuous function 

(find particle energy from the detector

 readouts). 
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Bayes theorem

Bayes’ theorem is stated mathematically as the following equation:

where A and B are events and P(B)≠ 0.

P(A | B) is a conditional probability: the likelihood of event A 
occurring given that B is true.
P(B | A) is also a conditional probability: the likelihood of event B 
occurring given that A is true.
P(A) and P(B) are the probabilities of observing A and B 
independently of each other; this is known as the marginal or 
unconditional probability.
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14

Bayes decision theory

●Statistical nature of feature vectors

●Assign the pattern represented by feature vector 
to the most probable of the available classes

That is
                 

                                                      maximum

x=[ x1 , x2 , . .. , x l ]
T

x

M ,...,, 21

x→ωi :P(ωi|x )
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15

●Computation of a-posteriori probabilities
– Assume known

• a-priori probabilities

•  
 

This is  also known as the likelihood of 

)()...,(),( 21 MPPP 

p( x|ωi ) ,i=1,2 ,. .. , M
x   w . r .   to   ωi .

Bayes Decision Theory
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16

p( x )P (ωi|x )=p( x|ωi)P(ωi )⇒

P(ωi|x )=
p ( x|ωi )P (ωi )

p ( x )
  

      p( x )=∑
i=1

2

p( x|ωi)P(ωi )

  The Bayes rule (Μ=2)

where
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17

 The Bayes classification rule (for two classes M=2)
 Given classify it according to the rule

 Equivalently:  classify   according to the Bayes rule 

 For equiprobable classes the test becomes

x

If P (ω1|x)>P(ω2|x )   x→ω1

If P (ω2|x )>P(ω1|x )   x→ω2

p( x|ω1 )P (ω1)(>< ) p ( x|ω2 )P (ω2 )

p( x|ω1 )(><) p( x|ω2)

x
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19

●Equivalently in words:  Divide space in two regions 

●Probability of error
– Total shaded area

–   

 Bayesian classifier is OPTIMAL with respect to 
minimizing the classification error probability!!!!

If x∈ R1⇒ x  in ω1

If x∈ R2⇒ x  in ω2








0

0
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20

– Indeed:  Moving the threshold the total shaded area 
INCREASES by the extra “grey” area.
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Classification Accuracy and Error 

● Classification accuracy is the ratio of correct predictions to total predictions 
made.

– classification accuracy = correct predictions / total predictions

● It is often presented as a percentage by multiplying the result by 100.

– classification accuracy = correct predictions / total predictions * 100

● Classification accuracy can also easily be turned into a misclassification rate 
or error rate by inverting the value, such as:

– error rate = (1 - (correct predictions / total predictions)) * 100
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Confusion matrix

● Example confusion matrix (recognition of dogs vs. cats)
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Confusion Matrix
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ROC curve

● ROC  (Receiver Operation Characteristic) curve was first used to calibrate 
radars.

● Two class classification.

● Shows the background rejection (1-ε
B
) vs. signal efficiency ε

B
. Shows how 

good the classifier is.

● The integral of ROC could be a measure of the classifier quality:

                                     Integral(ROC) = ½ – random

                                     Integral(ROC) = 1  - ideal
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Cuts

Optimization of cuts: 

● Move cuts as long as we get the 
optimal signal vs. background 
selection. For a given signal 
efficiency we find the best 
background rejection → we get the 
entire ROC curve.

● Optimization methods:

– Brute force

– Genetic algorithms

– Many others...

H1

H0

x1

x2
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● Based on the assumption, that variables are independent (so „naive''): 

Naive Bayes classifier

Data

Y-projectionX-projection

Classifier 
output

Frequently also called  
“projected likelihood''.

“Naive” 
assumption:
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Naive Bayes

● Output probability is a product of probabilities for all variables.

● Fast and stable

● It turns out that the Naive – Bayes classifier works reasonably well even in 
cases that violate the independence assumption.

In most real-life cases NB is suboptimal, sometimes it might fail.
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 These classifiers are memory-based and require no model to be fit.

 Training data:

- Define distance on input x (e.g. Euclidian distance)

- Classify new instance by looking at the label of the single 
closest sample in the training set:

K-Nearest Neighbors
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 By looking at only the closest sample, overfitting the data can be a 
huge problem.

 To prevent overfitting, we can smooth the decision boundary by K 
nearest neighbors instead of 1.

 Find the K training samples xr, r = 1,…,K closest in distance to x*, 
and then classify using majority vote among the k neighbors.

 The amount of computation can be intense when the training data 
is large since the distance between a new data point and every 
training point has to be computed and sorted.

K-Nearest Neighbors
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 Feature standardization is often performed in pre-processing (see 
our lecture on PCA).  

 Because standardization affects the distance, if one wants the 
features to play a similar role in determining the distance, 
standardization is recommended. 

 However, whether to apply normalization is rather subjective. 

 One has to decide on an individual basis for the problem in 
consideration.

K-Nearest Neighbors



9.12.2019 31M. Wolter

 The only parameter that can adjust the complexity of KNN is the number 
of neighbors k. 

 The larger k is, the smoother the classification boundary. Or we can think 
of the complexity of KNN as lower when k increases.

K-Nearest Neighbors

Bayes 
Decision 
Boundary

KNN
Decision 
Boundary

The parameter k should be tuned for each problem.
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 For another simulated data set, 
there are two classes. The error 
rates based on the training data, 
test data, and 10-fold cross 
validation are plotted against k, 
the number of neighbors. 

 We can see that the training error 
rate tends to grow when k grows, 
which is not the case for the error 
rate based on a separate test 
data set or cross-validation. 

K-Nearest Neighbors
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Projection to one dimension, than discrimination

Equivalent to linear 
separation

Fisher linear discriminants
LDA, Linear Discriminat Analysis

Method introduced by Fisher in 1936.
Optimal separation for Gaussian distributions.

We choose a projection 
vector in such a way, that the 
separation is maximized.

Assumptions for new basis:

● Maximize distance between projected class 
means

● Minimize projected class variance
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Fisher Linear Discriminant Analysis

Variance Between classes

Variance Within class

w - projection of vector 
x on 1-dimension
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Fisher Linear Discriminant Analysis
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Fisher’s linear discriminant (derivation)

Find the best direction w for accurate classification.

A measure of the separation between the projected points is the difference 
of the sample means. 

If mi is the d-dimensional sample mean 

from Di given by:

The difference of the projected sample means is:

The sample mean from the projected 

points Yi given by:
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Fisher’s linear discriminant (derivation)

Define scatter for the projection:

Choose w in order to maximize:

Define scatter matrices Si (i = 1, 2) and Sw by

is called the total within-class scatter.

38
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Fisher’s linear discriminant (derivation)

We obtain

39
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Fisher’s linear discriminant (derivation)

where

In terms of SB and Sw, J(w) can be written as:

Note that SB  and SW  are symmetric.
40
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Fisher’s linear discriminant (derivation)

Differentiating with respect to w, we find that J(w) is maximized when:

● S
B 
is always in the direction of m

1
-m

2

● We can drop the scalar factors  (wTS
B
w) and (wTS

W
w) since we are only 

interested in the direction of w 

SW w∝SBw

w∝SW
−1

(m2−m1)

D2
=(m2−m1)

T SW
−1

(m2−m1)

Maximum separation -  max J(w):

See minimization lemma – next slide
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Minimization lemma
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Fisher’s linear discriminant
● This result  is known as Fisher’s linear discriminant
● Strictly it is a specific choice of direction for projection of the data 

down to one dimension 
● The projected data can be used to construct a discriminant by 

choosing a threshold y
0
 so that we classify a new point as belonging to 

C
1
 if y(x) y

0
 and classify it as belonging to C

2
 otherwise.

●
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Quadratic Discriminant Analysis

● In the case of LDA, the Gaussians for each class are assumed to share the same 
covariance matrix.

● In the case of QDA, there are no assumptions on the covariance matrices of the 
Gaussians, leading to quadratic decision surfaces.
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Python examples

https://github.com/marcinwolter/ANOVA_2019/blob/master/plot_face_recognition.ipynb

https://github.com/marcinwolter/ANOVA_2019/blob/master/simple_classifier_comparison.ipynb
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Summary

● We have learned about simple classifiers 

● Next lecture – Deep Neural Networks – highly non-linear classifiers
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Exercise

Hemophilia studies

How well could we 
separate these classes?

S
W

-1

Find the direction of the w vector and the maximal separation.
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