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Principal Component Analysis PCA

Analiza składowych głównych
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PCA summary

●Suppose we have a population measured on p random variables 
X1,…,Xp. 

●Goal: a new set of p axes (linear combinations of the original p 
axes) in the directions of greatest variability:

● PCA is sensitive to the scaling of the variables.

PRINCIPAL COMPONENT 
ANALYSIS
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Two examples in python

● principal_component_analysis.ipynb

– Principal component analysis on famous IRIS dataset

– PCA is done once manually and once using sklearn package

– Sklearn is a machine learning package
● plot_digits_simple_classif.ipynb

– Analize hand-written digits - 8x8 pixel maps

– PCA performed on 64 input variables

– Naive Bayes method used for classification on n first principal components

– Digits visualized on 2D space

Did you manage to run these examples using other datasets?
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Just two points
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For x=y
 
    maximum var(X’) at α=450

var(X’) = x2(cos(α) +sin(α) )2 = x2(1+ sin(2α) )
Because:

var(x’) = 2 Var(x)
var(y’) = 0

α After rotation by an angle α:
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Formulate the problem

● We have a set of data points X having a covariance matrix Σ

● The transformation (rotation) B transforms X to X’:  X’ = BX

x

y

x’
y’

X’ = BX
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So some calculations

● Σ – covariance matrix of a data X

● Σ has the eigenvalues λ1≥λ2≥...≥λp≥0 and associated eigenvectors are e
1
, e

2
, …. , e

p
 .

● X’ = BX – transformation of X to the new coordinate system

● thus covariance   Cov(x’
1
) = Cov(B

11
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We know that
(see next slide)

So:

Def. of λ  
e

1
Te

1
=1 What we wanted to 

show!
Max. variance of X

1
’ = λ1  - 1

st eigenvalue of covariance matrix Σ,

The 1st PCA axis is the eigenvector e
1
 of covariance matrix Σ
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Lemma
Maximization of Quadratic Forms. Let B (pxp) be a positive definite matrix with 
eigenvalues λ1≥λ2≥...≥λp≥0 and associated normalized eigenvectors are e

1
, e

2
, …. , e

p
 . Then:

Proof: Let P (pxp) be the orthogonal matrix whose columns are the 
eigenvectors e

1
, e

2
, …. , e

p
 and Λ be the diagonal matrix with eigenvalues  

λ1≥λ2≥...≥λp≥0  along the main diagonal. Let B1/2 = PΛ1/2PT and y=PTx (sizes: 

y(px1), x(px1), PT(pxp)).
Consequently, x≠0 implies y≠0. Thus,
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Just two points again

● Try to do it using matrix calculations

Eigenvalues are:  λ1 =  x
1

2 + y
1
2,  λ2 = 0

These eigenvalues are our two variances we 
have found in the previous example!

Corresponding eigenvectors: 
(modulo normalization)
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Bessel’s correction
● In statistics, Bessel's correction is the use of n − 1 instead of n in the formula 

for the sample variance and sample standard deviation, where n is the 
number of observations in a sample. 

● This method corrects the bias in the estimation of the population variance. It 
also partially corrects the bias in the estimation of the population standard 
deviation. However, the correction often increases the mean squared error in 
these estimations. This technique is named after Friedrich Bessel.

● In estimating the population variance from a sample when the population 
mean is unknown, the uncorrected sample variance is the mean of the 
squares of deviations of sample values from the sample mean (i.e. using a 
multiplicative factor 1/n). In this case, the sample variance is a biased 
estimator of the population variance.
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Algebraic Interpretation

Nicely explained in:

http://docshare04.docshare.tips/files/12598/1259
83744.pdf

http://docshare04.docshare.tips/files/12598/125983744.pdf
http://docshare04.docshare.tips/files/12598/125983744.pdf
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Steps of PCA
Calculate the empirical mean

    Find the empirical mean along each column j = 1, ..., p.
    Place the calculated mean values into an empirical mean vector u of dimensions p × 1.

Calculate the deviations from the mean
Subtract the mean from each data point

Find the covariance matrix

    Find the p × p empirical covariance matrix C from matrix B (data):

Find eigenvalues by solving:

     This means solving a characteristic polynomial.
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Steps of PCA
Find the eigenvectors and eigenvalues of the covariance matrix

    Compute the matrix V of eigenvectors which diagonalizes the covariance matrix C:

Rearrange the eigenvectors and eigenvalues

    Sort the columns of the eigenvector matrix V and eigenvalue matrix D in order of 
decreasing eigenvalue.

Select a subset of the eigenvectors as basis vectors

     The goal is to choose a value of L as small as possible while achieving a reasonably 
high value of g on a percentage basis. 

Project the z-scores of the data onto the new basis

You have reduced the dimensionality of your explaining as much variance as possible.
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Steps of PCA
        
Find how much of variance is explained by n first principal components
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Steps of PCA
        
Give some interpretation to the principal components
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What would happen If I did PCA without 
normalization? Why do we normalize data?

In PCA we are interested in the components that maximize the variance. If 
one component (e.g. human height) varies less than another (e.g. weight) 
because of their respective scales (meters vs. kilos), PCA might determine 
that the direction of maximal variance more closely corresponds with the 
‘weight’ axis, if those features are not scaled. As a change in height of one 
meter can be considered much more important than the change in weight of 
one kilogram, this is clearly incorrect.

The dataset used is the 
Wine Dataset available at 
UCI. This dataset has 
continuous features that are 
heterogeneous in scale due 
to differing properties that 
they measure (i.e alcohol 
content, and malic acid).
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Correlation matrix
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Correlation or covariance matrix?

● Mean-centering is unnecessary if performing a principal components analysis 
on a correlation matrix, as the data are already centered after calculating 
correlations.

● We tend to use the covariance matrix when the variable scales are similar 
and the correlation matrix when variables are on different scales.
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Dimensionality Reduction

• Dimensionality reduction
– We can represent the orange points with only their v1 coordinates

• since v2 coordinates are all essentially 0

– This makes it much cheaper to store and compare points
– A bigger deal for higher dimensional problems
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Higher Dimensions

●Suppose each data point is N-dimensional
– Same procedure applies:

– The eigenvectors of A define a new coordinate system
• eigenvector with largest eigenvalue captures the most variation among 

training vectors x
• eigenvector with smallest eigenvalue has least variation

– We can compress the data by only using the top few eigenvectors
• corresponds to choosing a “linear subspace”

– represent points on a line, plane, or “hyper-plane”

• these eigenvectors are known as the principal components
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Non-linear PCA

Nonlinear principal component analysis (NLPCA) is  a nonlinear generalization of 
PCA. It generalizes the principal components from straight lines to curves 
(nonlinear). 

Nonlinear PCA can be achieved by using a neural network with an autoassociative 
architecture also known as autoencoder. Such autoassociative neural network is a 
multi-layer perceptron that performs an identity mapping, meaning that the output of 
the network is required to be identical to the input. 
In the middle of the network is a layer that works as a bottleneck in which a 
reduction of the dimension of the data is enforced. This bottleneck-layer provides 
the desired component values.
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Non-linear PCA

Linear PCA Non-linear PCA
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Summary
Principal Component Analysis: 

– Idea: rotate the axes to get maximal variance at the first axes, then 
second maximal at the second etc.

– Drop the least important axes to reduce the data dimensionality loosing 
as little information as possible.

● Principal components (eigenvalues and eigenvectors) can be found 
analitically

PRINCIPAL COMPONENT 
ANALYSIS
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Summary

● PCA helps to visualize the multidimensional data in 2D:

● Few components can explain most of the variance:

● Further analysis / classification might be much easier.
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A super-simple example
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Data:

Calculate the means:

Covariance matrix:
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Eigenvalues:

One eigenvalue much 
bigger than the other.
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Eigenvectors:

1.

2.

3.

From 1. we get:   68y
1
 = 23.42x

1
 ;   197.42y

1
 = 68x

1
   y⇨

1
 = 0.34x

1
 

Since x
1

2+y
1
2 = 1 we get:  x

1
=0.95; y

1
=0.33

From 2. we get:   68y
2
 = -197.42x

2
 ;   23.42y

2
 = -68x

2
   y⇨

2
 = -2.90x

2
 

Since x
2

2+y
2
2 = 1 we get:  x

2
=0.33; y

2
=-0.95

Both vectors are perpendicular and normalized.
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A 2D Numerical Example
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PCA Example –STEP 1

• Subtract the mean

from each of the data dimensions. All the x values 
have x subtracted and y values have y subtracted 
from them. This produces a data set whose mean is 
zero.

Subtracting the mean makes variance and covariance 
calculation easier by simplifying their equations. The 
variance and co-variance values are not affected by 
the mean value.
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PCA Example –STEP 1

DATA:
x      y
2.5 2.4
0.5 0.7
2.2 2.9
1.9 2.2
3.1 3.0
2.3 2.7
2 1.6
1 1.1
1.5 1.6
1.1 0.9

ZERO MEAN DATA:

x   y    

.69 .49

-1.31 -1.21

.39 .99

.09 .29

1.29 1.09

.49 .79

.19 -.31

-.81 -.81

-.31 -.31

-.71 -1.01

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
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PCA Example –STEP 1

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
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PCA Example –STEP 2

• Calculate the covariance matrix

cov =       .616555556    .615444444

           .615444444    .716555556

● Formula used: cov(B) = 1/(N-1) BTB

Bessel’s correction

● since the non-diagonal elements in this covariance matrix are positive, we 
should expect that both the x and y variable increase together.
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PCA Example –STEP 3

• Calculate the eigenvectors and eigenvalues of the covariance matrix

eigenvalues = 0.0490833989,        1.28402771

eigenvectors = -0.735178656   -0.677873399

                  0.677873399   -0.735178656 
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PCA Example –STEP 3

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
•eigenvectors are plotted 
as diagonal dotted lines on 
the plot. 
•Note they are 
perpendicular to each 
other. 
•Note one of the 
eigenvectors goes through 
the middle of the points, 
like drawing a line of best 
fit. 
•The second eigenvector 
gives us the other, less 
important, pattern in the 
data, that all the points 
follow the main line, but 
are off to the side of the 
main line by some 
amount.
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PCA Example –STEP 4

• Reduce dimensionality and form feature vector
the eigenvector with the highest eigenvalue is the principle 
component of the data set.

In our example, the eigenvector with the larges eigenvalue was 
the one that pointed down the middle of the data. 

Once eigenvectors are found from the covariance matrix, the 
next step is to order them by eigenvalue, highest to lowest. 
This gives you the components in order of significance. 
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PCA Example –STEP 4

Now, if you like, you can decide to ignore the components of 
lesser significance. 

You do lose some information, but if the eigenvalues are small, 
you don’t lose much

• n dimensions in your data 
• calculate n eigenvectors and eigenvalues
• choose only the first p eigenvectors
• final data set has only p dimensions.
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PCA Example –STEP 4

• Feature Vector
FeatureVector = (eig1 eig2 eig3 … eign)

We can either form a feature vector with both of the 
eigenvectors:

-.677873399    -.735178656 
-.735178656     .677873399 

or, we can choose to leave out the smaller, less 
significant component and only have a single column:
     - .677873399 

- .735178656
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PCA Example –STEP 5

• Deriving the new data
FinalData = RowFeatureVector x RowZeroMeanData

RowFeatureVector is the matrix with the eigenvectors in the 
columns transposed so that the eigenvectors are now in the 
rows, with the most significant eigenvector at the top

RowZeroMeanData is the mean-adjusted data 
transposed, ie. the data items are in each column, 
with each row holding a separate dimension.
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PCA Example –STEP 5

FinalData transpose: dimensions 
along columns
 x           y

 -.827970186 -.175115307
1.77758033 .142857227
-.992197494 .384374989
-.274210416 .130417207
-1.67580142 -.209498461
-.912949103 .175282444
.0991094375 -.349824698
1.14457216 .0464172582
.438046137 .0177646297
1.22382056 -.162675287
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PCA Example –STEP 5

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
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Reconstruction of original Data

●If we reduced the dimensionality, obviously, when 
reconstructing the data we would lose those 
dimensions we chose to discard. In our example let us 
assume that we considered only the x dimension…
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Reconstruction of original Data

x       
    

 -.827970186 
1.77758033 
-.992197494 
-.274210416 
-1.67580142 
-.912949103 
.0991094375 
1.14457216 
.438046137 
1.22382056

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
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Homework
1. Example of PCA and interpretation of 
principal components. Read with 
understanding.
    
http://docshare04.docshare.tips/files/1259
8/125983744.pdf

http://docshare04.docshare.tips/files/12598/125983744.pdf
http://docshare04.docshare.tips/files/12598/125983744.pdf
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Homework

2. Solve this:
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Homework

Some hints:

Page 449 of the book: Standardizing the Sample Principal Components

Example of conversion of covariance matrix to correlation matrix:

          1.0  1.0  8.1
Cov.matrix =  1.0 16.0 18.0    Corr. Matrix = 
                      8.1 18.0 81.0 
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Homework

● Extra problem:

In the python script plot_digits_simple_classif.ipynb try to reconstruct the 
digits using limited number of principal components.
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