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Principal Component Analysis PCA

Analiza sktadowych gtownych
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= PCA summary y

® Suppose we have a population measured on p random variables
Xiyeeen X

>
® Goal: a new set of p axes (linear combinations of the original p
axes) in the directions of greatest variability:

k.
T

“ PRINCIPAL COMPONENT

(o] o~
v Q
© ANALYSIS ©
& : % 5
> . « ° 2 >
. PCA ,
. ® o * .
® c ° ® »
Variable 1

® PCA is sensitive to the scaling of the variables.
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Two examples in python

® principal_component_analysis.ipynb

— Principal component analysis on famous IRIS dataset
— PCAis done once manually and once using sklearn package
— Sklearn is a machine learning package
® plot_digits_simple_classif.ipynb
— Analize hand-written digits - 8x8 pixel maps
— PCA performed on 64 input variables
— Naive Bayes method used for classification on n first principal components
— Digits visualized on 2D space

Did you manage to run these examples using other datasets?
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Just two points

mean subtracted : v = —x5 ==
Y= Y2 =Y
M btracted: ,
e var(X) = o
y,=-y var(Y) = y?
1
S« After rotation by an angle ac:
'\ [ cos(a) sin(a)) (x)\ [xcos(a)+ ysin(a)
y' ) \—sin(a) cos(a)/ \y) \zsin(a)—ycos(a)
(X.V.) Var(X’) = 2'? = (z cos(a) + ysin(a))?
2,72
/ Var(Y') = y'? = (—zsin(a) + y cos(a))?

X' y")
For x=y maximum var(X’) at a=45°

var(X’) = x?(cos(a)+sin(a«))? = x?(1+sin(2«))

Because: 2tand
sin(26) = 2sinfcosf = o
1+ tan? @

var(x’) = 2 Var(x)
var(y’)=0

(x,Y’,)
17.11.2019 M. Wolter, ANOVA 2019




Formulate the problem

® \We have a set of data points X having a covariance matrix
® The transformation (rotation) B transforms X to X’: X' = BX

» y
o ©

Xl

X' =BX

X

02

17.11.2019 M. Wolter, ANOVA 2019 6




So some calculations

® 3 — covariance matrix of a data X

® 2 has the eigenvalues )\127\22...2)\P20 and associated eigenvectors are e , ,, ..., € .

® X’ = BX — transformation of X to the new coordinate system

® thus covariance Cov(x’)) = Cov(B X +..+B X ) = B,'2B,, where
B,=(B,,,B,,---.By,)

x TBx
We know that mar, o—— = A1 (attained when x = eq)
(see next slide) X X
BIXB
So: maxBl#Oﬁ = \; Bj eigenvector of ¥, \{ eigenvalue)
151
T
)Y
A = €1T 1 _ 6,{261 = Var(X7)
/4 €1 €1 \
e,'e=1 What we wanted to

Max. variance of X'= A - 1% eigenvalue of covariance matrix Z,
The 1% PCA axis is the eigenvector e of covariance matrix Z

7.10.2019 M. Wolter, ANOVA 2019 7




Lemma

Maximization of Quadratic Forms. Let B (pxp) be a positive definite matrix with

eigenvalues )\127\22...2)\P20 and associated normalized eigenvectors are e, e, ....

T
x Bx
MATqs0 5~ = A (attained when x = ;)
T
x Bx
Min,, 4 Ty A, (attained when x = e,

Proof: Let P (pxp) be the orthogonal matrix whose columns are the
eigenvectors e, e, ...., e and A be the diagonal matrix with eigenvalues

)\12)\22...2)\p20 along the main diagonal. Let BY?>= PAY?PT and y=P"x (sizes:

y(px1), x(px1), P*(pxp)).
Consequently, x#0 implies y#0. Thus,
x TBx xTB1/2B1/2x

xTx xTPPTx

B xTPAY2PTPAY2PTx B yvTAy
yty yly

L Zle Azy? < )\ Zle y7,2
— <N —=——>

Zle y7,2 Zle y%
M. Wolter, ANOVA 2019
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Just two points again

® Try to do it using matrix calculations

Data:B=|" Y ‘
. 1 1 (222 2z 2 T
Covariance :Cov(B) = —NBTB =5 |2zy 2?/% = |y yg
i T2 — )\ Ty
Figenvalues :Det(Cov(B) — A\l ) = Det ( y e )\D —0

(22 =Ny =N —2?y* =0= X\, =2+ y* A\ =0

: . _ 2 2 —_
Eigenvalues are: 2 = x°+y.? 1,=0
These eigenvalues are our two variances we
have found in the previous example!

Corresponding eigenvectors: o — 1/y o — 1/x
(modulo normalization) 1 1/x 2

7.12.2012 M. Wolter, Algorytmy uczace sie
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Bessel’s correction

® |n statistics, Bessel's correction is the use of n — 1 instead of n in the formula
for the sample variance and sample standard deviation, where n is the
number of observations in a sample.

® This method corrects the bias in the estimation of the population variance. It
also partially corrects the bias in the estimation of the population standard
deviation. However, the correction often increases the mean squared error in
these estimations. This technique is named after Friedrich Bessel.

® |n estimating the population variance from a sample when the population
mean is unknown, the uncorrected sample variance is the mean of the
squares of deviations of sample values from the sample mean (i.e. using a
multiplicative factor 1/n). In this case, the sample variance is a biased
estimator of the population variance.

7.12.2012 M. Wolter, Algorytmy uczace sie
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P Algebraic Interpretation

Nicely explained in:

http://docshare04.docshare.tips/files/12598/1259
83744 .pdf

RICHARD A DEAN W
JOHNSON WICHERN
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B Steps of PCA y

Calculate the empirical mean

Find the empirical mean along each columnj=1, ..., p.
Place the calculated mean values into an empirical mean vector u of dimensions p x 1.

1 T
uj=—> X
n =

1=1

Calculate the deviations from the mean
Subtract the mean from each data point

Find the covariance matrix

Find the p x p empirical covariance matrix C from matrix B (data):

C = %BTB
Find eigenvalues by solving:
det(C — A1) =0

This means solving a characteristic polynomial.

25.11.2019 M. Wolter 12
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B Steps of PCA y

Find the eigenvectors and eigenvalues of the covariance matrix

Compute the matrix V of eigenvectors which diagonalizes the covariance matrix C:
C?)i — )\’LU’L
Rearrange the eigenvectors and eigenvalues

Sort the columns of the eigenvector matrix V and eigenvalue matrix D in order of
decreasing eigenvalue.

Select a subset of the eigenvectors as basis vectors

The goal is to choose a value of L as small as possible while achieving a reasonably
high value of g on a percentage basis.
Project the z-scores of the data onto the new basis

You have reduced the dimensionality of your explaining as much variance as possible.

25.11.2019 M. Wolter 13
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=4 Steps of PCA y

Find how much of variance is explained by n first principal components

In case of PCA, "variance" means summative variance or multivariate variability or overall variability
or total variability. Below is the covariance matrix of some 3 variables. Their variances are on the
diagonal, and the sum of the 3 values (3.448) is the overall variability.

1.343730519 -.160152268 .186470243
-.160152268 . 619205620 -.126684273
.186470243 -.126684273 1.485549631

Now, PCA replaces original variables with new variables, called principal components, which are
orthogonal (i.e. they have zero covariations) and have variances (called eigenvalues) in decreasing
order. So, the covariance matrix between the principal components extracted from the above data is

this:
1.651354285 .000000000 .000000000
.000000000 1.220288343 .000000000
.000000000 . 000000000 .576843142

Note that the diagonal sum is still 3.448, which says that all 3 components account for all the
multivariate variability. The 1st principal component accounts for or "explains" 1.651/3.448 = 47.9% of
the overall variability; the 2nd one explains 1.220/3.448 = 35.4% of it; the 3rd one explains .577/3.448
= 16.7% of it.

25.11.2019 M. Wolter 14
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sl Steps of PCA

Give some interpretation to the principal components

25.11.2019 M. Wolter 15
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25.11.2019

What would happen If | did PCA without

ils

normalization? Why do we normalize data?

In PCA we are interested in the components that maximize the variance. If
one component (e.g. human height) varies less than another (e.g. weight)
because of their respective scales (meters vs. kilos), PCA might determine
that the direction of maximal variance more closely corresponds with the
‘weight’ axis, if those features are not scaled. As a change in height of one
meter can be considered much more important than the change in weight of
one kilogram, this is clearly incorrect.

2nd principal ¢

60 4

20

=20 +

Training dataset after PCA

Standardized training dataset after PCA

class 0 4 4 class 0
m class1 m classl
class 2 class 2
3
]
o L
24 & i
D_ o
g o '
] m “a
u g a .
& g 19 o
£ Og
I
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g i S e ] W
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[ o ] = s £ 44
5 @ A < @
g ol A ~ ® &
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. ol . A A4 “a = -1 4
"n & o° o | A > A A
L!f—"'j_'_l A A {_J LYY A
[ | =2 @ @ A e ‘1
® _ agp A dd
m - N t -2 4 P A
%3] A
L J
-3 4 )
-400 -200 4] 200 400 600 800 2 1] 2 4
1st principal component 1st principal component
M. Wolter

The dataset used is the
Wine Dataset available at
UCI. This dataset has
continuous features that are
heterogeneous in scale due
to differing properties that
they measure (i.e alcohol
content, and malic acid).

16
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PK Correlation matrix

The correlation matrix refers to the symmetric array of numbers

/1 2 n3 -+ rp)
1 r3g --- Ip
R=|[mnk1 k2 1 - 1y
\"ot Tz fpg - 1)
where - _ _
Sk >_i—1 (X — Xj)(Xik — Xk)

i — — —
jk
S;S Y X
B \/ZL (Xi = X})2 \/ZL (Xik — Xic)?

is the Pearson correlation coefficient between variables x; and x.

25.11.2019 M. Wolter 17
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P Correlation or covariance matrix?

® Mean-centering is unnecessary if performing a principal components analysis
on a correlation matrix, as the data are already centered after calculating

correlations.

® \\Ve tend to use the covariance matrix when the variable scales are similar
and the correlation matrix when variables are on different scales.

Cov(X.Y) |
C'DI'I'(X}Y) = . ~ Covarianced normalized by Standard Deviation
\L_ G'ID'}. ]
Correlation between X and Y l

Standard deviation of X

w1

Standard deviation of ¥

25.11.2019 M. Wolter 18
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PK Dimensionality Reduction
G o
o o o °
Z is the mean s © ° o
of the orange o o
points o °x U2 ° o
° xo wl ° 6
o © 8 T O oO
o © o o
o © © oo ©
o © o o
o o
R

* Dimensionality reduction
— We can represent the orange points with only their v, coordinates
* since v, coordinates are all essentially O
— This makes it much cheaper to store and compare points
— A bigger deal for higher dimensional problems

25.11.2019 M. Wolter 19
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PK Higher Dimensions »

® Suppose each data point is N-dimensional
— Same procedure applies:

var(v) = > [[x—-%)7T v|

— vIAv where A = Z(X —X)(x — E)T
X

— The eigenvectors of A define a new coordinate system

e eigenvector with largest eigenvalue captures the most variation among
training vectors x

* eigenvector with smallest eigenvalue has least variation

— We can compress the data by only using the top few eigenvectors

e corresponds to choosing a “linear subspace”
— represent points on a line, plane, or “hyper-plane”

* these eigenvectors are known as the principal components

25.11.2019 M. Wolter 20




Non-linear PCA

(I)ea".tr X - Z (I-)gen 2= X

extraction generation

Nonlinear principal component analysis (NLPCA) is a nonlinear generalization of
PCA. It generalizes the principal components from straight lines to curves
(nonlinear).

Nonlinear PCA can be achieved by using a neural network with an autoassociative
architecture also known as autoencoder. Such autoassociative neural network is a
multi-layer perceptron that performs an identity mapping, meaning that the output of
the network is required to be identical to the input.

In the middle of the network is a layer that works as a bottleneck in which a
reduction of the dimension of the data is enforced. This bottleneck-layer provides
the desired component values.

7.12.2012 M. Wolter, Algorytmy uczace sie



Non-linear PCA

A
PN w}\\;ﬁﬁ%}‘“‘}}/
I e

Linear PCA Non-linear PCA

7.12.2012 M. Wolter, Algorytmy uczace sie 22




Summary

Principal Component Analysis:

— ldea: rotate the axes to get maximal variance at the first axes, then
second maximal at the second etc.

ot PRINCIPAL COMPONENT o
® ANALYSIS ®
5 ‘ % 5
> . « ° 2 >
e PCA ,

- ® o * °
’ ] Variable:l

— Drop the least important axes to reduce the data dimensionality loosing
as little information as possible.
® Principal components (eigenvalues and eigenvectors) can be found
analitically

7.12.2012 M. Wolter, Algorytmy uczace sie



Summary

® PCA helps to visualize the multidimensional data in 2D:

L= e = I ¥ U ) B = s - I =

® Few components can explain most of the variance:

175

150

125

100

75

50

25

0 ¥ T T
o 10 20 30 40 50 60

® Further analysis / classification might be much easier.

7.12.2012 M. Wolter, Algorytmy uczace sie
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| A super-simple example
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Data:

) ={(2) () (

Calculate the means:

E(x) =0, E(y) =0

= s
Bome one
. e

[S—
=
S
Ve

o
L S
Mg gt
'\_v_/

Covariance matrix:

CJ::}QXJCT:: (

200 68
D

68 26

7.12.2012 M. Wolter, Algorytmy uczace sie



Eigenvalues:

200X 68 ) _
68  26—A\)

(200 — M\)(26 — \) — 682 =0

A\, = 22342, A\, = 2.58

One eigenvalue much
bigger than the other.

7.12.2012 M. Wolter, Algorytmy uczace sie



Eigenvectors:

, 200 68 x x
1. T — 1) 1
oo = (20 55 (21) 2. ()
_, (200 68 To\ To
) Com= (B %) (77) =288 (12)
3. ety =1, a3+ys=1

From 1. we get: 68y, =23.42x,; 197.42y, =68x, =Yy, =0.34x,
Since x *+y > =1 we get: x,=0.95;y,=0.33

From 2. we get: 68y, =-197.42x,; 23.42y,=-68x, =Yy, =-2.90x,
Since x,*+y,> = 1 we get: x,=0.33;y,=-0.95

(095
1 0.33 Both vectors are perpendicular and normalized.

. (033
2=\ _0.95

7.12.2012 M. Wolter, Algorytmy uczace sie



A 2D Numerical Example
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DI PCA Example —-STEP 1 ils

e Subtract the mean

from each of the data dimensions. All the x values
have X subtracted and y values have y subtracted
from them. This produces a data set whose mean is
Zero.

Subtracting the mean makes variance and covariance
calculation easier by simplifying their equations. The
variance and co-variance values are not affected by
the mean value.

25.11.2019 M. Wolter 30




Y'Y
e PCA Example -STEP 1 ils

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

ZERO MEAN DATA:

DATA:
X y X Y
25 (2.4 .69 49
05 |07 -1.31 1.21
22 |29 39 99
1.9 2.2 09 29
31 |30 1.29 1.09
2.3 |21 49 79
2 |16 19 _31
L 1.1 -.81 -81
15 |1.6 o o
1.1 [0.9 - -
71 -1.01

25.11.2019 M. Wolter 31
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Daud PCA Example -STEP 1 -

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

Criginal PCA data
4 T

' v PCAdatadat’  +

-1 0 1 2 3 4

Figure 3.1: PCA example data, original data on the left, data with the means subtracted
on the right, and a plot of the data

25.11.2019 M. Wolter 32
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PCA Example —~STEP 2 - [

 Calculate the covariance matrix
cov = 0616555556 .615444444
015444444 716555556

® Formula used: cov(B) = 1/(N-1) BB
Bessel’'s correction

® since the non-diagonal elements in this covariance matrix are positive, we
should expect that both the x and y variable increase together.

25.11.2019 M. Wolter 33
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% PCA Example -STEP 3 ﬂ?

* Calculate the eigenvectors and eigenvalues of the covariance matrix

eigenvalues = 0.0490833989, 1.28402771

eigenvectors =|-0.735178656 | |-0.677873399
0.677873399| |-0.735178656

25.11.2019 M. Wolter 34
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Dt PCA Example -STEP 3 il

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
*eigenvectors are plotted

Mean adjusted data with eigenvectors overayed as diagonal dOtted |ines on
2 - T T T - LT w T +
AN &%%%%%ﬁ&%%%ﬁ%gt — the plot.
15N A R *Note they are
1 \\ perpendicular to each
AN o other.
05 |- AN 4 | *Note one of the
™, - .
S eigenvectors goes through
’ N the middle of the points,
e o . . .
a5 N ] Il_ke drawing a line of best
rd “a\ fit.
r P N I *The second eigenvector
el b | gives us the other, less
\\\t important, pattern in the
E ] ] ] 1 ] ] \\ I
2 data, that all the points

follow the main line, but
Figure 3.2: A plot of the normalised data (mean subtracted) with the eigenvectors of gre Off to the side of the

the covariance matrix overlayed on top. main line by some

amount.

25.11.2019 M. Wolter 35




Yy
PK PCA Example -STEP 4

ils

* Reduce dimensionality and form feature vector

the eigenvector with the highest eigenvalue is the principle
component of the data set.

In our example, the eigenvector with the larges eigenvalue was
the one that pointed down the middle of the data.

Once eigenvectors are found from the covariance matrix, the
next step Is to order them by eigenvalue, highest to lowest.
This gives you the components in order of significance.

25.11.2019 M. Wolter 36
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PK PCA Example -STEP 4 ”

Now, if you like, you can decide to ignore the components of
lesser significance.

You do lose some information, but if the eigenvalues are small,
you don’t lose much

* n dimensions in your data
* calculate n eigenvectors and eigenvalues

* choose only the first p eigenvectors
* final data set has only p dimensions.

37
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s PCA Example ~STEP 4 ily

 Feature Vector
FeatureVector = (eig; eig, eigs ... eig,)

We can either form a feature vector with both of the
eigenvectors:

-.6/7/7873399 -.7/35178656
-./35178656 .6//8/7/3399

or, we can choose to leave out the smaller, less
significant component and only have a single column:

- .6/7873399
- ./35178656

25.11.2019 M. Wolter 38
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haid PCA Example -STEP 5 -

* Deriving the new data
FinalData = RowFeatureVector x RowZeroMeanData

RowFeatureVector is the matrix with the eigenvectors in the
columns transposed so that the eigenvectors are now in the
rows, with the most significant eigenvector at the top
RowZeroMeanData IS the mean-adjusted data
transposed, ie. the data items are in each column,
with each row holding a separate dimension.

25.11.2019 M. Wolter 39
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haid PCA Example -STEP 5 -

FinalData transpose: dimensions
along columns

X y
-.827970186 -.175115307
1.77758033 142857227
-.992197494 384374989
_.274210416 1130417207
-1.67580142 -.209498461
-.912949103 175282444
0991094375 -.349824698
1.14457216 0464172582
438046137 0177646297
1.22382056 -.162675287

25.11.2019 M. Wolter 40
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PCA Example -STEP 5 ﬂ?

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

25.11.2019

Data transformed with 2 eigenvectors
2 I 1 1

" idoublevechinal dat” = +

0.5 - .

-1.5 =

Figure 3.3: The table of data by applying the PCA analysis using both eigenvectors,
and a plot of the new data points.

M. Wolter 41




P Reconstruction of original Data ”

®|f we reduced the dimensionality, obviously, when
reconstructing the data we would lose those
dimensions we chose to discard. In our example let us
assume that we considered only the x dimension...

25.11.2019 M. Wolter 42
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% Reconstruction of original Data ﬂ?

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

Criginal data restored using only a single eigenvector

X ! QR SS—

-.827970186 .

1.77758033 #

-.992197494 2| o

-.274210416 *

-1.67580142 ' #

-.912949103 '

0991094375 ’

1.14457216

438046137 iz 0 | 2 3 4

1.22382056 Figure 3.5: The reconstruction from the data that was derived using only a single eigen-
vector
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P Homework

The eigenvalues and corresponding normalized eigenvectors of R, determined by a

1. Example of PCA and interpretation of csilpuler i
principal components. Read with ) )
understanding_ ‘)"l == 2437, ei = [ .469‘ -532, 465, 387, 361]

5

>
k>
|

= 1407, & = [~.368,—.236,~315, .585, .606]

g
I

http://docshare04.docshare.tips/files/1259 Ay Gy aang; i e
8/125983744.pdf _ A= 400, & =] 363,-.629, 289,-381, 493]

3

Table 8.4 Stock-Price Data (Weekly Rate Of Return) As =255,  es=[ .384,-.496, 071, .595,—.498]
IP Wells Royal Exxon : : : : s
Week Morgan Citibank Fargo Duteh Shell Mobil coml;;:lnei t;l;le standardized variables, we obtain the first two sample principal
1 0.01303 —0.00784 —0.00319 -0.04477 0.00522 " R
2 0.00849 0.01669 —0.00621 0.01196 0.01349 Y = ejz = 469z; + .532z; + 46523 + 38774 + 361z
3 —0.01792 —0.00864 0.01004 0 —0.00614 % aro
4 0.02156  ~0.00349 001744  -0.02859  —0.00695 Yo = &9z = = 368z = 2362, — 3157 + 58574 + 60625
5 0.010 00372 -0, 3 .02919 0.04098 n
6 001017  -00120  —0.0083% 001371 000299 | These components, which account for
7 0.01113 0.02800 0.00807 0.03054 0.00323 a A
8 0.04848  —0.00515 0.01825 0.00633 0.00768 Mt M) o0e = (_____2-43? + 1-407)100% - 7%
9 —0.03449 —0.01380 —0.00805 —0.02990 —0.01081 a
10 =0.00466 0.02099 —0.00608 —0.02039 —0.01267
: : : : : : of the total (standardized) sample variance, have interesting interpretations. The
34 0.03732 0.03593 0.02528 0.05819 gg;ﬁi}; first component is a roughly equally weighted sum, or “index,” of the five stocks
gg gg%ggg gggg;; —g%sg _ggﬁ%g __0'01285 This component might be called a general stock-market component, or, simply, a
97 ~0.00606  0.00863 0.00584 0.04456 0.03059 | market component. _
98 0.02174 0.02296 0.02920 0.00844 0.03193 The second component represents a contrast between the banking stocks
99 0.00337 -0.01531 -0.02382 —0.00167 —-0.01723 (JP Morgan, Citibank, Wells Fargo) and the oil stocks (Royal Dutch Shell, Exxon-
100 0.00336 0.00290 -0.003035 -0.00122 -0.00970 Mobil). It might be called an industry component. Thus, we see that most of the
101 0.01701 0.00951 0.01820 =0.01618 —0—00752 variation in these stock returns is due to market activity and uncorrelated industry
ig% -ggig$g *gg?igg —33(1);;3 :g%ﬁ;g :ggigg.’, activity. This interpretation of stock price behavior also has been suggested by
: e ' : ' King [12].

The remaining components are not easy to interpret and, collectively, represent
variation that is probably specific ta each stock. In any event, they do not explain
much of the total sample variance. =

M. Wolter 44
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P Homework

2. Solve this:

8.6. Data on x, = sales and x} = profits for the 10 largest companies in the world were
listed in Exercise 1.4 of Chapter 1.

From Example 4.12
__[1sse0] o _[747645 30362
* 1470 | 303.62  26.19

(a) Determine the sample principal components and their variances for these data. (You
may need the quadratic formula ta solve for the eigenvalues of S.)

(b) Find the proportion of the total sample variance explained by ;.

8.7. Convert the covariance matrix S in Exercise 8.6 to a sample correlation matrix R.
(a) Find the sample principal components y;, y, and their variances.
(b) Compute the proportion of the total sample variance explained by ;.
(c) Compute the carrelation coefficients r;, ., k = 1,2. Interpret y,.

(d) Compare the compaonents obtained in Part a with those obtained in Exercise 8.6(a)
Given the original data displayed in Exercise 1.4, do you feel that it is better to
determine principal components from the sample covariance matrix or sample
carrelation matrix? Explain.
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P Homework g

Some hints:

If X and Y are two random variables, with means (expected values) uy and py and standard deviations gy and gy,
respectively, then their covariance and correlation are as follows:

covariance covyy = oxy = B[(X — ux) (Y — py)]

correlation COrrxyy = pxy = E[(X — ,u)() (Y — ﬂy)]/(UXUY),
so that

PXy = JXY/(JXU'Y)

Page 449 of the book: Standardizing the Sample Principal Components

Example of conversion of covariance matrix to correlation matrix:

R
1.0 1.0 8.1 P e
Cov.matrix= 1.0 16.0 18.0 Corr. Matrix = il ok
8.1 18.0 81.0 025 105
09 05 1
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® Extra problem:

In the python script plot_digits_simple_classif.ipynb try to reconstruct the
digits using limited number of principal components.
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