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Summary of ANOVA 1 & 2 way
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What we have learned?

Analysis of Variance (ANOVA)

F-test

Tukey-
Kramer 

test

One-Way 
ANOVA

Two-Way 
ANOVA 

Interaction
Effects
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One-Factor ANOVA 

c3210 μμμμ:H  

same the are μ all Not:H i1

321 μμμ  321 μμμ 

or
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Two-Way ANOVA 
Sources of Variation

SST
Total Variation

SSA
Factor A Variation

SSB
Factor B Variation

SSAB
Variation due to interaction 

between A and B

SSE
Random variation (Error)

Degrees 
of 
Freedom:

r – 1

c – 1

(r – 1)(c – 1)

rc(n’ – 1)

n - 1

SST = SSA + SSB + SSAB + SSE
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Principal Component Analysis PCA
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Problems

● Which variables are responsible for the highest variance?

● Can we build by linear transformation new variables and rank then according 
to the variance they create?

● If we have multidimensional data, can we visualize them in 2D using most 
discriminating variables out of a set of new variables?

● PCA is sensitive to the scaling of the variables.

PRINCIPAL COMPONENT 
ANALYSIS



18.11.2019 8M. Wolter

0 10 20 30 40 50 60 700

0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

Person

H
-B

an
ds

0 50 150 250 350 450
50
100
150
200
250
300
350
400
450
500
550

C-Triglycerides

C
-L

D
H

0
100

200
300

400
500

0
200

400
600
0

1

2

3

4

C-Triglycerides
C-LDH

M
-E

P
I

Univariate

Bivariate

Trivariate

Data Presentation

How to find  the ‘best’  low 
dimension space that conveys 
maximum useful information?
One answer: Find “Principal 
Components”
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We wish to explain/summarize the underlying variance-
covariance structure of a large set of variables through a few 
linear combinations of these variables. 

The Goal 
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Applications

●Uses:
– Data Visualization

– Data Reduction
– Data Classification
– Noise Reduction

●Examples:
– How many unique “sub-sets” are in the 

sample?
– How are they similar / different?
– Which measurements are needed to 

differentiate?
– How to best present what is “interesting”?
– Which “sub-set” does this new sample 

rightfully belong?
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This is accomplished by rotating the axes.

Suppose we have a population measured on p random variables 
X1,…,Xp. Note that these random variables represent the p-axes of 
the Cartesian coordinate system in which the population resides. 
Our goal is to develop a new set of p axes (linear combinations of 
the original p axes) in the directions of greatest variability:

X1

X2

Trick: Rotate Coordinate Axes
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Two examples
● principal_component_analysis.ipynb

– Principal component analysis on famous IRIS dataset

– PCA is done once manually and once using sklearn package

– Sklearn is a machine learning package
● plot_digits_simple_classif.ipynb

– Analize hand-written digits - 8x8 pixel maps

– PCA performed on 64 input variables

– Naive Bayes method used for classification on n first principal components

– Digits visualized on 2D space
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Just two points

(x
1,
y

1
)

(x
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Mean subtracted:
x

2
=-x
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(x’
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y’
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For x=y
 
    maximum var(X’) at α=450

var(X’) = 2*x2(cos(α) +sin(α) )2 = 2*x2(1+ sin(2α) )
Because:

var(x’) = 2 var(x)
var(y’) = 0

α After rotation by an angle α:
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Algebraic Interpretation

●Given m points in a n dimensional space, for large n, how 
does one project on to a low dimensional space while 
preserving broad trends in the data and allowing it to be 
visualized?
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Algebraic Interpretation 

●Given m points in a n dimensional space, for large n, how does 
one project on to a 1 dimensional space?

●Choose a line that fits the data so the points are spread out well 
along the line



7.12.2012 16M. Wolter, Algorytmy uczące się

●Formally, minimize sum of squares of distances to the line.

  

●Why sum of squares? Because it allows fast minimization, assuming 
the line passes through 0

Algebraic Interpretation – 2D
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●Minimizing sum of squares of distances to the line is the same 
as maximizing the sum of squares of the projections on that 
line, thanks to Pythagoras.

  

Algebraic Interpretation 

X = (x
1
, x

2
)              : original

X’ = BX = (x’
1
, x’

2
)  : rotated

x
1

x’
1

Should be max
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●How is the sum of squares of projection lengths 
expressed in algebraic terms?

     

                       

Algebraic Interpretation

Nicely explained in:

http://docshare04.docshare.tips/files/12598/1259
83744.pdf
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• (BTB)x points in some other direction in general

 x is an eigenvector and e an eigenvalue if

                      

x

(BTB)x

x
ex=(BTB)x

Algebraic Interpretation



18.11.2019 22M. Wolter

●How many eigenvectors are there?
●For Real Symmetric Matrices

– except in degenerate cases when eigenvalues repeat, there are n eigenvectors
  x1…xn are the eigenvectors
  e1…en are the eigenvalues

– all eigenvectors are mutually orthogonal and therefore form a new basis
• Eigenvectors for distinct eigenvalues are mutually orthogonal
• Eigenvectors corresponding to the same eigenvalue have the property that any linear 

combination is also an eigenvector with the same eigenvalue; one can then find as many 
orthogonal eigenvectors as the number of repeats of the eigenvalue.

  

                      

Algebraic Interpretation

http://docshare04.docshare.tips/files/12598/125983744.pdf
http://docshare04.docshare.tips/files/12598/125983744.pdf
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●For matrices of the form BTB

– All eigenvalues are non-negative (try to show this?)

  

                      

Algebraic Interpretation
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Some mathematics
Maximization of Quadratic Forms. Let B (pxp) be a positive definite matrix with 
eigenvalues λ1≥λ2≥...≥λp≥0 and associated normalized eigenvectors are e

1
, e

2
, …. , e

p
 . Then:

Proof: Let P (pxp) be the orthogonal matrix whose columns are the 
eigenvectors e

1
, e

2
, …. , e

p
 and Λ be the diagonal matrix with eigenvalues  

λ1≥λ2≥...≥λp≥0  along the main diagonal. Let B1/2 = PΛ1/2PT and y=PTx (sizes: 

y(px1), x(px1), PT(pxp)).
Consequently, x≠0 implies y≠0. Thus,
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So some calculations

● Σ – covariance matrix of a data X

● Σ has the eigenvalues λ1≥λ2≥...≥λp≥0 and associated eigenvectors are e
1
, e

2
, …. , e

p
 .

● X’ = BX – transformation of X to the new coordinate system

● thus covariance   Cov(x’
1
) = Cov(B

11
x

1
+...+B

1p
x

p
) = B

1
TΣB

1
, where 

B
1
=(B

11
,B

12
…,B

1p
)

We know that

So:

Def. of λ  
e

1
Te

1
=1 What we wanted to 

show!
Max. variance of X

1
’ = λ1  - 1

st eigenvalue of covariance matrix Σ,

The 1st PCA axis is the eigenvector e
1
 of covariance matrix Σ
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Just two points again

● Try to do it using matrix calculations

Eigenvalues are:  λ1 =  x
1

2 + y
1
2,  λ2 = 0

These eigenvalues are our two variances!

Corresponding eigenvectors: 
(modulo normalization)
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PCA: General

From k original variables: x1,x2,...,xk:

Produce k new variables: y1,y2,...,yk:

y1 = a11x1 + a12x2 + ... + a1kxk

y2 = a21x1 + a22x2 + ... + a2kxk

...

yk = ak1x1 + ak2x2 + ... + akkxk
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From k original variables: x1,x2,...,xk:

Produce k new variables: y1,y2,...,yk:

y1 = a11x1 + a12x2 + ... + a1kxk

y2 = a21x1 + a22x2 + ... + a2kxk

...

yk = ak1x1 + ak2x2 + ... + akkxk

such that:

yk's are uncorrelated (orthogonal)
y1 explains as much as possible of original variance in data set
y2 explains as much as possible of remaining variance
etc.

PCA: General
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4.0 4.5 5.0 5.5 6.0
2

3

4

5

1st Principal 
Component, y1

2nd Principal 
Component, y2



18.11.2019 30M. Wolter

PCA Scores
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PCA Eigenvalues
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Summary

● PCA helps to visualize the multidimensional data in 2D:

● Few components can explain most of the variance:

● Further analysis / classification might be much easier.
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