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Covariance Matrix

● Let X be a p-variate random vector. The covariance matrix of X is defined as:

Where:
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Cross-covariance matrix

We define the covariance matrix (cross-covariance) between X and Y to be

Some relations:
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Trace and variance

Let A = (a
ij
) be a square matrices of dimension d × d.

● The trace of A is the sum of its diagonal elements:

● The mean is the best constant predictor of X in terms of the MSE (shown 
already at previous lecture):

● The total variance of X is defined as the MSE of the mean:

● The total variance of X measures the overall variability of the components of 
X around the mean E(X). Commonly used measure of variability is the 
standard deviation.
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Quadratic Forms

Let A be a symmetric matrix and x a vector.

Definition:

A quadratic form is written as:

Note: it’s a quadratic function of x.

– As a function of A, 

which is a quadratic form in A.

– Quadratic forms are very common in multivariate analysis.

– Example: Chi-squared test is a quadratic form.
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Quadratic forms

The matrix A is a square matrix and can always be written in a symmetric form.
More general: in the complex space it is a Hermitian matrix (or self-adjoint matrix): 
complex square matrix that is equal to its own conjugate transpose. 
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Positive/negative semi-definite and 
positive/negative definite matrix
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Example

Note that covariance matrices have the following properties:
1)Every covariance matrix is a positive semi-definite matrix.
2)Every positive semi-definite matrix is a covariance matrix.
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Methods of testing whether a matrix is 
positive/negative definite

Sylvester criterion:
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Sylvester criterion – an example
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Determinant

The simplest way to express the determinant is by considering the elements 
in the top row and the respective minors; starting at the left, multiply the 
element by the minor, then subtract the product of the next element and its 
minor, and alternate adding and subtracting such products until all elements 
in the top row have been exhausted.
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Eigenvalues and eigenvectors

Let vector v > 0 and let A be a d × d matrix.

v is an eigenvector with eigenvalue λ when                                                         
        Av = λv.

– It’s typical to normalize the eigenvector to have length 1 (or have it’s 
entries sum to 1).

– Matrix A has at most d distinct eigenvalues (think about why).

– Eigenvectors with distinct eigenvalues are orthogonal, i.e. v
1

Tv
2
=0

● If A is a positive definite matrix, then:

– All of its eigenvalues are real-valued and positive.

– Its inverse is also positive definite.
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Eigendecomposition 
(spectral decomposition)

● Matrix A has n linearly independent eigenvectors v
1
, v

2
, ..., v

n
 with associated 

eigenvalues λ
1
, λ

2
, ..., λ

n
. 

● Define square matrix Q whose columns are the n linearly independent 
eigenvectors of A:

● Since each column of Q is an eigenvector of A:

● Define matrix Λ: Λ
ii
 = λ

i
 and Λ

ij
 = 0 for i≠j, than

● A = Q Λ Q-1         (multiplying both sides by Q-1)

● Or  Q-1 A Q = Λ 

● Matrix A can be decomposed into a matrix composed of its eigenvectors, a 
diagonal matrix with its eigenvalues along the diagonal, and the inverse 
of the matrix of eigenvectors. 

This is called the eigendecomposition. Matrix A is diagonalizable.
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Eigendecomposition

● The eigen (spectral) decomposition allows some operations with positive 
definite matrices to be computed more easily:

A−1 = P Λ−1 PT .

A1/2 = P Λ1/2 PT .

● Example:

                  can be decomposed into 
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Eigendecomposition
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Eigendecomposition
For any matrix A F∈ n×n  det(A−λI) is a polynomial of degree n 
(characteristic polynomial). The roots of this polynomial are the the 
eigenvalues.

Example:

The equation det(A−λI)=−(1−λ) (2−λ) (1 +λ) = 0 is a characteristic polynomial. 
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Eigendecomposition
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Multivariate Normal Distribution

● MVN is generalization of univariate normal distribution 
(gausian).

Normal distribution (Gaussian):

Johann Karl Friedrich Gauss 
(1777 – 1855)

Gaussian 
distribution



14.10.2019 22M. Wolter

Multivariate Normal Distribution

● We assume that the population mean is μ = E(X) and                                      
Σ = Var(X) = E[(X − μ)(X − μ)T ], then:
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Central limit theorem (CLT)
● One of the most important theorems of the statistics – this is why we 

observe in nature mostly Gaussian distributions. 

Let {X
1
, …, X

n
} be a random sample of size n of independent and identically 

distributed random variables drawn from a distribution of expected value given 
by µ and finite variance given by σ2. CLT states that as n gets larger, the 
distribution of the difference between the sample average  and its limit µ, when 
multiplied by the factor √n, approximates the normal distribution with mean 0 
and variance σ2. For large enough n, the distribution of average is close to the 
normal distribution with mean µ and variance σ2/n.
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Central limit theorem (CLT)
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Central limit theorem (CLT)
For the first time CLT for binomial distributions was postulated in the second 
edition of the „The Doctrine of Chances” by Abraham de Moivre’a, published 
in 1738. It was forgotten for over 80 years, and in 1812 Pierre-Simon Laplace 
proved CLT for the binomial distributions.

CLT in the version of Lindeberg & Levy was published in 1920’ties, however 
independently it was proven earlier by Aleksandr Lyapunov in 1901.

Abraham de Moivre (1667 – 1754) 
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Proof of classical CLT

● Characteristic function of a random variable  defines its probability 
distribution (if a random variable admits a probability density function, then the 
characteristic function is the Fourier transform of the probability density 
function).

● Assume {X
1
, …, X

n
} are independent and identically distributed random 

variables, each with mean µ and finite variance σ2. The sum X
1
 + … + X

n
 has 

mean nµ and variance nσ2. The random variable:

●  The characteristic function of Zn is given by:

● since all of the Y
i
 are identically distributed (zero mean, σ=1).

“An Introduction to Stochastic Processes in Physics”, Don S. Lemons

Taylor’s theorem
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Proof of classical CLT

● Since ex= lim(1 + x/n)n, the characteristic function of Z
n
 equals:

● All of the higher order terms vanish in the limit n → ∞. 

● The right hand side equals the characteristic function of a standard normal 
distribution N(0,1) → in the limit of n → ∞ the Z

n
 → N(0,1)
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Singular Value Decomposition SVD
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SVD
Singular value decomposition is a method of decomposing a matrix 
into three other matrices:

Where:

    A is an m × n matrix
    U is an m × n orthogonal matrix 
    S is an n × n diagonal matrix
    V is an n × n orthogonal matrix

https://blog.statsbot.co/singular-value-decomposition-tutorial-52c695315254

Orthogonal matrices:
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SVD

The variables, {sᵢ}, are called singular values and are normally arranged 
from largest to smallest:

The columns of U are called left singular vectors, while those of V are called 
right singular vectors.
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SVD
Using orthogonality property we get:

The standard procedure (or eigenvalue calculator) can be used to 
solve these equations and find the U, V and S2.
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Applications of the SVD

Tvu 111
Tvu 222 Tvu 333 Tvu 444

Tvu 555 Tvu 666 Tvu 777
Tvu 888

the SVD of a 32-times-32 digital image A is computed

the activities are lead by Prof. Per Christian Hansen. 

https://blog.statsbot.co/singular-value-decomposition-tutorial-52c695315254
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Applications of the SVD

1A 2A 3A 4A

5A 6A 7A 8A
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G. Strang  “ at first you see nothing, and suddenly you recognize everything.”
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Exercises

1) Write a code (python, R) which performs eigendecomposition of a given 
symmetric matrix. 

● Code it yourself
● Try maybe numpy.roots(p) to find the roots
● Test against  numpy.linalg.eig()
● If you want to play more try to visualize the linear transformation (see 

“BONUS: visualizing linear transformations” in 

https://hadrienj.github.io/posts/Deep-Learning-Book-Series-2.7-Eigendecomposition/ )
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Exercises

● Apply Singular Value Decomposition to a photograph:

     numpy.linalg.svd

● Apply Singular Value Decomposition to a photograph:

     

http://www2.imm.dtu.dk/~pch/Projekter/tsvd.html
http://www.imm.dtu.dk/~pch
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Exercises

● Write a script showing, that the CLT works :)
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