\$\phi\$ meson production in proton-proton collisions in the NA61/SHINE experiment at CERN SPS

Antoni Marcinek

Department of Ultrarelativistic Nuclear Physics and Hadron Structure, IFJ PAN

NZ23 seminar, 14 June 2019

Outline

Introduction

2 Analysis methodology

3 Results

Introduction

$\phi=s\overline{s}$ meson according to PDG 2014

- Mass $m = (1019.461 \pm 0.019) \,\mathrm{MeV}$
- Width $\Gamma = (4.266 \pm 0.031) \, \mathrm{MeV}$
- $\mathcal{BR}(\phi \to K^+K^-) = (48.9 \pm 0.5)\%$

Goal of the analysis

• Differential ϕ multiplicities in p+p collisions measured in NA61/SHINE

- $\rightarrow~{\rm from~invariant}$ mass spectra fits in $\phi \rightarrow K^+K^-$ decay channel
- ightarrow as function of rapidity ${
 m y}$ and transverse momentum p_T

Motivation

- To constrain hadron production models
 - $\rightarrow \phi$ interesting due to its hidden strangeness (ss)
- Reference data for Pb+Pb at the same energies

New development

- Preliminary results released > 2 years ago, basis of my PhD, presented on several conferences, e.g. Quark Matter, also on IFJ PAN seminar
- While drafting the paper a question of background description with event mixing came back

- For preliminary estimated 5% correction and 5% systematic uncertainty due to this misdescription; used MC with these structures mocked by misidentified K^* daughters and e^+ , e^- (improbable in dE/dx selected data, rather f_0 / a_0)
- We can do better: let's fit it!

Antoni Marcinek (NZ23, IFJ PAN)

NA61/SHINE experiment

General info

- Fixed target experiment in the North (experimental) Area of CERN SPS
- Successor of NA49
- Beams
 - hadrons (secondary)
 - ions (secondary and primary)
- \sim 150 physicists \rightarrow IFJ PAN group (6 people) since June 2016
- Physics active since 2009

Physics programme

SHINE = SPS Heavy Ion and Neutrino Experiment

Heavy ion physics

- spectra, correlations, fluctuations
- critical point
- onset of deconfinement
- * EM interactions with spectators

Cosmic rays and neutrinos

- precision measurements of spectra
- cosmic rays: Pierre Auger Observatory, KASCADE
- neutrinos: T2K, Minerνa, MINOS, NOνA, LBNE

Physics programme

SHINE = SPS Heavy Ion and Neutrino Experiment

Heavy ion physics

- spectra, correlations, fluctuations
- critical point
- onset of deconfinement
- * EM interactions with spectators

Cosmic rays and neutrinos

- precision measurements of spectra
- cosmic rays: Pierre Auger Observatory, KASCADE
- neutrinos: T2K, Minerνa, MINOS, NOνA, LBNE

NA61/SHINE detector

liquid H₂ target

Performance

- total acceptance $\sim 80\,\%$
- momentum resolution $\sigma(p)/p^2 \sim 10^{-4} \, {\rm GeV^{-1}}$
- track reconstruction efficiency $>95\,\%$

Antoni Marcinek (NZ23, IFJ PAN)

Data selection

Events

- inelastic
- in the target
- with well measured main vertex

TPC tracks

- from main vertex
- well reconstructed
- number of points in TPCs → accurate dE/dx and momentum
- particle identification of kaon candidates (PID cut)

Non-biasing TOF-dE/dx background reduction cut

New with respect to preliminary / PhD analysis

- Possible only in limited number of total momentum bins (TOF acceptance / resolution)
- dE/dx fit with Gaussian, m^2 fit with q-Gaussian
- Cut on 3σ to remove other particles without removing any kaons (rejects tracks if unambiguously non-kaons)

Biasing dE/dx kaon selection cut

- Selection done with dE/dx
- Accept tracks in ± 5 % band around kaon Bethe-Bloch curve (area between black curves in right picture)
- Losses due to efficiency of this selection corrected with tag-and-probe method

Signal extraction

phase space binning, invariant mass spectrum

Signal extraction

phase space binning, invariant mass spectrum

Signal

Convolution of:

- relativistic Breit-Wigner $f_{\rm relBW}(m_{\rm inv};m_\phi,\Gamma)$ resonance shape
- q-Gaussian $f_{\rm qG}(m_{\rm inv};\sigma,q)$ broadening due to detector resolution

Background

Previously event mixing. Now main result with modified generalised ARGUS distribution $f_{ARGUS}(m_{inv}; k, p)$ and for systematic uncertainty estimation also mixing + K^* template + f_0 resonance fit

Fitting function

$$f(m_{\mathrm{inv}}) = N_{\mathrm{p}} \cdot (f_{\mathrm{relBW}} * f_{\mathrm{qG}})(m_{\mathrm{inv}}; m_{\phi}, \Gamma, \sigma, q) + N_{\mathrm{bkg}} \cdot f_{\mathrm{ARGUS}}(m_{\mathrm{inv}}; k, p)$$

Signal extraction

tag-and-probe method \rightarrow ATLAS, LHCb

- Goal: to remove bias of N_{ϕ} due to PID cut efficiency ε
- Simultaneous fit of 2 spectra:
 - tag at least one track in the pair passes PID cut

$$N_{\rm t} = N_{\phi} \varepsilon (2 - \varepsilon)$$

probe — both tracks pass PID cut

$$N_{\sf p} = N_{\phi} \varepsilon^2$$

Antoni Marcinek (NZ23, IFJ PAN)

Comparison with PhD results

- Background reduced in Tag sample thanks to TOF-dE/dx cut
- Fitting down to kaon threshold
- Background actually fitted in both samples

Normalization and corrections

$$\frac{\mathrm{d}^2 n}{\mathrm{d}p_T \,\mathrm{dy}} = \frac{N_{\phi}}{N_{\mathrm{ev}} \,\Delta p_T \,\Delta \mathrm{y}} \times \frac{c_{\infty} \cdot c_{\mathrm{MC}}}{\mathcal{BR}(\phi \to K^+ K^-)}$$
• $c_{\infty} \sim 1.06$ — extrapolation of the resonance curve

Antoni Marcinek (NZ23, IFJ PAN)

Uncertainties

- Total systematic uncertainty = $\sqrt{\sum \sigma_i^2}$
- For p+p @ 40 GeV/c additional bin-independent 3 % due to c_{MC} averaging
- Statistical uncertainty dominates

• Fit $p_T e^{-m_T/T} \rightarrow \text{extrapolation to } p_T = \infty \rightarrow \text{tail} < 1 \%$

• First 2D (y vs p_T) ϕ production measurements for p+p @ 158 GeV/c

• Fit $p_T e^{-m_T/T} \rightarrow \text{extrapolation to } p_T = \infty \rightarrow \text{tail} < 1 \%$

Antoni Marcinek (NZ23, IFJ PAN)

Shape parameters compared to models

- Pythia describes p_T spectra shapes best, UrQMD and EPOS fail
- Pythia gives slightly too narrow \boldsymbol{y} distributions, while EPOS and UrQMD closer to each other and data

Double & single differential spectra: 80 GeV/c & 40 GeV/c

• Fit $p_T e^{-m_T/T} \rightarrow \text{extrapolation to } p_T = \infty \rightarrow \text{tail} < 4\% \& < 1\%$

Double & single differential spectra: 80 GeV/c & 40 GeV/c

Shape parameters compared to models

- Pythia describes p_T spectra shapes best, UrQMD and EPOS fail
- Pythia gives slightly too narrow \boldsymbol{y} distributions, while EPOS and UrQMD closer to each other and data

Transverse mass spectra at midrapidity

Thermal fit results		
$p_{\rm beam} [{\rm GeV}]$	T_{ϕ} [MeV]	T_{π^-} [MeV]
158	$141 \pm 12 \pm 9$	$159.3 \pm 1.3 \pm 2.6$
80	$150\pm24\pm20$	$159.9 \pm 1.5 \pm 4.1$

Rapidity

- NA61/SHINE consistent with NA49 S. Afanasiev et al., Phys. Lett. B 491, 59 (2000)
- Midrapidity, especially for 158 GeV/c, higher than in PhD due to TOF-dE/dx cut

Rapidity

- NA61/SHINE consistent with NA49 S. Afanasiev et al., Phys. Lett. B 491, 59 (2000)
- Midrapidity, especially for 158 GeV/c, higher than in PhD due to TOF-dE/dx cut
- Fit Gaussian $e^{-y^2/2\sigma_y^2} \rightarrow \text{extrapolation to } y = \infty \rightarrow \text{tails: } 3\% \text{ for 158 GeV}, 7\% \text{ for 80 GeV}, 5\% \text{ for 40 GeV}$

NA49: PLB 491 (2000), PRC 66 (2002), PRL 93 (2004), PRC 77 (2008), PRC 78 (2008)

Comparison of particles / reactions

- All but ϕ in Pb+Pb:
 - $\sigma_{\rm y}$ proportional to ${\rm y}_{\rm beam}$ with the same rate of increase
- two new ϕ points in p+p emphasize peculiarity of ϕ in Pb+Pb

NA49: PLB 491 (2000), PRC 66 (2002), PRL 93 (2004), PRC 77 (2008), PRC 78 (2008)

Comparison of particles / reactions

- All but ϕ in Pb+Pb:
 - $\sigma_{\rm y}$ proportional to ${\rm y}_{\rm beam}$ with the same rate of increase
- two new ϕ points in p+p emphasize peculiarity of ϕ in Pb+Pb

NA49: PLB 491 (2000), PRC 66 (2002), PRL 93 (2004), PRC 77 (2008), PRC 78 (2008)

Comparison of particles / reactions

- All but ϕ in Pb+Pb:
 - $\sigma_{\rm y}$ proportional to $y_{\rm beam}$ with the same rate of increase
- two new ϕ points in p+p emphasize peculiarity of ϕ in Pb+Pb

Comparison of particles / reactions

- All but ϕ in Pb+Pb:
 - $\sigma_{\rm y}$ proportional to $y_{\rm beam}$ with the same rate of increase
- two new ϕ points in p+p emphasize peculiarity of ϕ in Pb+Pb

Coalescence

• Not compatible with production through K^+ K^- coalescence, but p+p closer

Reference data for Pb+Pb: total yield

NA49: PRC 66 (2002), PRC 77 (2008), PRC 78 (2008)

- ϕ/π ratio increases with collision energy
- Production enhancement in Pb+Pb about 3×, independent of energy
- Enhancement systematically larger than for kaons, comparable to K⁺
 - $\rightarrow\,$ for K^- consistent with strangeness enhancement in parton phase (square of K^- enhancement)

Comparison with world data and models

p+p world data

NA61/SHINE results consistent with world data, much more accurate

Comparison with world data and models

p+p world data

NA61/SHINE results consistent with world data, much more accurate

Models

- EPOS close to data, Pythia underestimates experimental data, UrQMD underestimates $\sim 2 \times$, HRG (thermal) overestimates $\sim 2 \times$
- EPOS rises too fast with $\sqrt{s_{NN}}$

Summary

Results

Differential multiplicities of *φ* mesons in p+p:

158 GeV	first 2D (y and p_T)
80 GeV	2D, first at this energy
40 GeV	$2 \times 1D$, first at this energy

Comparison with experimental data

- Results consistent with p+p world data, showing superior accuracy
- Non-trivial system size dependence of width of rapidity distribution (σ_y), contrasting with that of other mesons → needs study in Be+Be, Ar+Sc, Xe+La
- Confirm enhancement in Pb+Pb, independent of energy in considered range, similar to kaons

Comparison with models

- Each describes well either p_T or y shape, but not both
- None is able to describe total yields

Acknowledgements

- This work was supported by the National Science Centre, Poland (grant numbers: 2014/14/E/ST2/00018, 2015/18/M/ST2/00125)
- and the Foundation for Polish Science MPD program, co-financed by the European Union within the European Regional Development Fund

Modified generalized ARGUS distribution

$$f(x;k,p) = \begin{cases} 0 & \text{for } x \le 2m_K \\ z(x) \cdot \left(1 - \frac{z^2(x)}{x_{\max}^2}\right)^p \cdot \exp\left\{k\left(1 - \frac{z^2(x)}{x_{\max}^2}\right)\right\} & \text{for } x > 2m_K \end{cases}, \quad (1a)$$

with

$$z(x) = 2m_K + x_{\max} - x, \qquad (1b)$$

where k is a shape parameter corresponding to $-\frac{1}{2}\chi^2$ in the Wikipedia formula for the ARGUS distribution, p is the power as in the generalized ARGUS distribution, m_K is the kaon mass and x_{\max} is the right boundary of the m_{inv} histogram. Note that in this parametrization, based on ROOFIT's RooArgusBG, k can be any real number, while the original ARGUS formula assumed it to be negative.

Contributions on top of event mixing

• Templates from MC:

• f_0 resonance fit instead of e^+, e^- :

