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G QCD Phase Diagram and Critical Phenomena
9 Method of intermittency analysis

e Previously released results at 150/158A GeV/c
6 New results on Ar+Sc at 150A GeV/c

© New results on Ar+Sc at 75A GeV/c

@ Critical Monte Carlo Study

ﬂ Spurious signal likelihood estimation

@ Summary and outlook
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Phase diagram of QCD

@ Objective: Detection / existence of the QCD Critical Point (CP)

Temperature T

A

\

Quark-Gluon Plasma
sQGP

Critical

Matter = _-=E

A CFL-KY, Crystalline CSC

Meson supercurrent Baryon Chemical Potential us
Gluonic phase, Mixed phase

K. Fukushima, T. Hatsuda, Rept. Prog. Phys. 74:014001 (2011)

Nuclear Superfluid

@ Look for observables tailored for the CP; Scan phase diagram by varying
energy and size of collision system.

N. Davis (IFJ PAN) NAG61/SHINE intermittency analysis

February 22, 2019 3/53



Critical Observables; the Order Parameter (OP)

4{ CP observables Ji

Local:
density fluctuations of OP
in transverse space
(stochastic fractal)

Event-by-event (global) fluctuations:
Variance, skewness, kurtosis —
sensitive to experimental acceptance

Chiral condensate
o(x) =(q(x)q(x))

induced critical

Order parameter couplin ;
P Ping fluctuations*

Net baryon density
ng(x)

*[Y. Hatta and M. A. Stephanov, PRL91, 102003 (2003)]
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Self-similar density fluctuations near the CP

) divergent correlation ( Universality Class

[ Critical Point J

L& space dimensionality}

length ¢ — o
determines l I
Critical exponents W dictate (Correlations in
(power-law) J Lconfiguration space
| Fourier
transform

|

Correlations in
momentum space

infinite
size
system

o-field:
(no(k)ng (k")) ~ |k — k'|7*3,
no (k) = o2(k)
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Baryons:
(n(k)ng(k')) ~ [k — k|73,
ng = net baryon density
at midrapidity
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Observing power-law fluctuations: Factorial moments

Experimental observation of local, power-law distributed fluctuations =

Intermittency’® in transverse momentum space (net protons at mid-rapidity)

(Critical opalescence in ion collisions®)

@ Net protons used as proxy for net baryons (same critical fluctuations®);
finally, protons can be used (dominant contribution) & anti-protons dropped.

@ Transverse momentum space is partitioned into M?
cells

@ Calculate second factorial moments Fo(M) as a
function of cell size & number of cells M:

R [-

where (. ..) denotes averaging over events.

1[J. Wosiek, Acta Phys. Polon. B 19 (1988) 863-869]
2[A. Bialas and R. Hwa, Phys. Lett. B 253 (1991) 436-438]

Nm: number of
particles in my, bin

3[FK. Diakonos, N.G. Antoniou and G. Mavromanolakis, PoS (CPOD2006) 010, Florence]

4[Y. Hatta and M. A. Stephanov, PRL91, 102003 (2003)]
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Subtracting the background from factorial moments

@ Experimental data is noisy = a background of non-critical pairs must be
subtracted at the level of factorial moments.

@ Intermittency will be revealed at the level of subtracted moments AF>(M).

Partitioning of pairs into critical/background

(n(n = 1)) =(nc(nc — 1)) +{np(np — 1)) + 2{npnc)
—_———

critical background cross term

AF(M) = FS(M)-AM)2 - FP (M) =2 - A(M) - (1 = A(M)) fioe
S— N——— N— S——
correlator data background ratio ::zg

@ The cross term can be neglected under certain conditions
(non-trivial! Justified by Critical Monte Carlo* simulations)

* [Antoniou, Diakonos, Kapoyannis and Kousouris, Phys. Rev. Lett. 97, 032002 (2006).]
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Critical Monte Carlo (CMC) algorithm for baryons

Lévy walk example

@ Simplified version of CMC* code:

@ Only protons produced 4’ o %
@ One cluster per event, produced by » }‘"‘4; y
- ) uh, b A
random Lévy walk: 4] @,,{\ i !
d®? — /35 ¢, =5/6 vy ®’

e Lower / upper bounds of Lévy walks
Pmin,max Plugged in.

o Cluster center exponential in pr, slope
adjusted by T, parameter. "

e Poissonian proton multiplicity
distribution.

Input parameters

Parameter pmin (MeV)  pmax (MeV)  Apgisson T (MeV)
Value 01—1 800—1200 (Pnonempyy 163

* [Antoniou, Diakonos, Kapoyannis and Kousouris, Phys. Rev. Lett. 97, 032002 (2006).]
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Scaling of factorial moments — Subtracting mixed events

For A < 1 (background domination), two approximations can be applied:
@ Cross term can be neglected

@ Non-critical background moments can be approximated by (uncorrelated) mixed
event moments; then,

AR (M) = AFS (M) = FE%(M) — F™ (M) J

For a critical system, AF, scales with cell size (number of cells, M) as:

AFy (M) ~ (M?)** J

where @ is the intermittency index.

Theoretical prediction for ¢»
o¥) =2(0.833..)

net baryons (protons)

universality class,
effective actions

[N. G. Antoniou, F. K. Diakonos, A. S. Kapoyannis,
K. S. Kousouris, Phys. Rev. Lett. 97, 032002 (2006)]
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NA49: “C"+C, “Si"+Si, Pb+Pb at 158A GeV/c

@ 3 sets of NA49 collision systems were analysed', at 158A GeV/c:
“C"+C, “Si"+Si, Pb+Pb (“C’=C,N ; “Si"=Si,Al,P)

@ Factorial moments of proton transverse momenta analyzed at mid-rapidity
o Fitwith AF/(M ; C,¢5) = €€ - (M?)?, for M2 > 6000

45
'C+C @ 158A GeV (NA49)
4 data data »
mixed mixed
s 35
% Pb+Pb @ 158A GeV (NAL9)
3
s 25 8 'SI+Si@ 158A GeV (NAL9) 25 s
M
2 2 2
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
M2 M2 m?

@ No intermittency detected in the “C"+C, Pb+Pb datasets.
@ Evidence for intermittency in “Si”’+Si — but large statistical errors.

1[T. Anticic et al., Eur. Phys. J. C 75:587 (2015), arXiv:1208.5292v5]
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NA49: “C"+C, “Si"+Si, Pb+Pb at 158A GeV/c

"Si"+Si

g
X
w

- +0.38

25 data e 05 038 2 $oB = 0.9670_25

mixed x -0. $28 = 0.9670:25
2 0
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 0.5 1 15 2 25 3
M2 M2 ®2

@ Evidence for intermittency in “Si”’+Si — but large statistical errors.

@ Based on CMC simulation, we estimate a fraction of ~ 1% critical protons are
present in the sample.

e Estimated intermittency index: ¢p2 5 = 0.96*5-33(stat.) + 0.16(syst.)

1[T. Anticic et al., Eur. Phys. J. C 75:587 (2015), arXiv:1208.5292v5]
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Noisy CMC (baryons) — estimating the level of background

@ F»(M) of noisy CMC approximates “Si"+Si for A ~ 0.99

) AFée)(M) reproduces critical behaviour of pure CMC, even though their
moments differ by orders of magnitude!

4 ©®
3 250
200 CMC Si
g 150
+0.1
5
2.5 =0.807
2- 2 100 518
50 ’
1o 0 L \ } I =t
® Si+A data ® Si+A data 0 2 25 3
A CMC with noise A CMC with noise
10°4 A pure CMC @
0y T T T T U
0 5000 10000 15000 20000 5000 10000 20000
M M

@ Noisy CMC results show our approximation is reasonable for dominant
background.
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Improving calculation of F>(M) via lattice averaging

@ Problem: With low statistics/multiplicity, lattice boundaries may split pairs of
neighboring points, affecting Fo(M) values (see example below).

@ Solution: Calculate moments several DISplgced lattice
times on different, slightly displaced — a simple example

lattices (see example) M=3, lattice for one event

—M=3

@ Average corresponding F>(M) over all
lattices. Errors can be estimated by
variance over lattice positions.

—M=3 displaced

original lattice
. . [-1.5,1.5]x[-1.5,1.5]
displaced lattice

@ Lattice displacement is larger than
experimental resolution, yet maximum 05
displacement must be of the order of
the finer binnings, so as to stay in the
correct pr range. S b, (Gev)

[1.2,1.8)x[-1.2,1.8]

p,, (GeV)

,_
o
&
S
@
o
o
&
-
"
o
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Improved confidence intervals for ¢, via resampling

@ In order to estimate the statistical errors of AF>(M), we need to produce
variations of the original event sample. This, we can achieve by using the
statistical method of resampling (bootstrapping) =

@ Sample original events with replacement, producing new sets of the same statistics
(# of events)
o Calculate AFo(M) for each bootstrap sample in the same manner as for the
original.
e The variance of sample values provides the statistical error of AFo(M).
[W.J. Metzger, “Estimating the Uncertainties of Factorial Moments”, HEN-455 (2004).]

@ Furthermore, we can obtain a distribution P(¢p2) of ¢» values. Each bootstrap
sample of AF,(M) is fit with a power-law:

AFo(M;C, 2) = & - (M) )

and we can extract a confidence interval for ¢» from the distribution of values.
[B. Efron, The Annals of Statistics 7,1 (1979)]
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Systematic effect estimation

@ Systematic uncertainties arise from:
o Misidentification of protons & detector effects (e.g. acceptance)
e The fact that F>(M) are correlated for different bin sizes M
@ Selection of M-range to fit for power-law
@ Bin correlations are partially handled by the bootstrap ¢» distribution, but that is
insufficient! The effect of bin correlation has to be investigated through Critical
and background Monte Carlo simulation; independent bins approach has also
been attempted.

@ Other systematic uncertainties are estimated by varying proton and M-range
selection
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NA61/SHINE: Be+Be at 150A GeV/c

4 -
NA61/SHINE preliminary

3.5

@ F(M) of data and mixed events
overlap =

@ Subtracted moments AF>(M)
fluctuate around zero =

Fo(M)

@ No intermittency effect is observed.

@ Preliminary analysis with CMC
simulation indicates an upper limit of
~ 0.3% critical protons
[PoS(CPOD2017) 054]

NA61 Be+Be data —e—
NA61 Be+Be mixed +———

0 5000 10000 15000 20000
MQ
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NA61/SHINE: “Ar + 4°Sc at 150A GeV/c

@ First released results of preliminary analysis in Ar+Sc at 150A GeV/c —
CPOD2018 Conference (Corfu, September 2018).

@ NA61/SHINE CP task force created to verify and extend these results. Task
force is spearheaded by IFJ Krakow group, with important contributions from
Athens (NKUA), Warsaw (WUT, NCNR) and Frankfurt (FIAS).

@ Intermittency analysis process:
e Proton selection via particle energy loss dE/dx
o Removal of split tracks — gjny distribution & cut of proton pairs
o Probe Apt distribution of proton pairs for power-law like behaviour in the limit of
small pr differences
o Calculate factorial moments Fo(M), AF>(M) for selected protons
o Calculate intermittency index ¢» (when possible) & estimate its statistical
uncertainty
@ Results were obtained for:

@ 0-5%, 5-10% and 10-15% centrality bins
@ 80%, 85% and 90% minimum proton purity selections
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Proton selection

dE/dx

NA61/SHINE preliminary NA61/SHINE preliminary
d : 10* 1.8¢
. 175 dE/dx vs p
tot
5 16F
10 155 -
X 14¢
10 18-
T 12F .
115
10 {E
. 0.9 ’ 1
S . H E | | sy . .
05 52 O%5 0 05 15 2
Log,, [P,/ 1 GeVic] Log,, [P,/ 1 GeVic]

@ Employ piot region where Bethe-Bloch bands do not overlap
(3.98 GeV/c < piot < 126 GeV/c)

@ Fit dE/dx distribution with 4-gaussian sum for a = x, K, p, e — Bins: pit, pr
@ 30 Bins in Log;q(por): 10°¢ — 1021 GeV/c
@ 20 Binsin p7: 0.0 —» 2.0 GeV/c
@ Proton purity: probability for a track to be a proton, $, = p/(m + K + p + €)
@ Additional cut along Bethe-Blochs

(avoid low-reliability region between p and K curves)
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Split tracks & the gjny cut

@ Events may contain split tracks: sections of the same track erroneously
identified as a pair of tracks that are close in momentum space.

@ Three cuts to root them out:
@ Ratio of points / potential points in a track (removes most)
@ Minimum track distance in the detector (pair cut)
@ gin cut (pair cut, physics-significant)

@ giny distribution of track pairs probed in order to root the rest out:
Ginv(Pir ) = 3+J—(Pi — pj)2, pi : 4-momentum of /" track.

@ We calculate the ratio of gdat@/gmixed,

inv inv
Ar+Sc NA61, cent.0-5%, pur.90%, qw Ratio Ar+Sc NA61, cent.5-10%, pur.90%, qmu Ratio Ar+Sc NA61, cent.10-15%, pur.90%, qw Ratio
16F ] 1.6F 16F
x 1.4F NA61/SHINE preliminary x 1.4F x 140 4
€ 12F £ 12F € 12F M
8 4 } " 8 4 gt e 2 L @ S
= | Gy e = A SR R = Feei s as el
T 0.8F T 08F T 0.8F
o o o
= 0.6F =1 0.6F 2 0.6F
xr 04fF o 04f x 04fF
0.2F vq o 0.2F e 0.2F g, o
o L o L o L
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
MeV/c MeV/c MeV/c
q.( ) q,( ) q.( )
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Split tracks & the gjny cut

@ A peak at low gi,y (below 20 MeV/c) indicates a possible split track
contamination that must be removed.

@ Anti-correlations due to F-D effects and Coulomb repulsion must be removed
before intermittency analysis = “dip” in low giny, peak predicted around 20
MeV/c [Koonin, PLB 70, 43-47 (1977)]

@ Universal cutoff of gy > 7 MeV/c applied to all sets before analysis.

Ar+Sc NA61, cent.0-5%, pur.90%, qmv Ratio Ar+Sc NA61, cent.5-10%, pur.90%, C|”W Ratio Ar+Sc NA61, cent.10-15%, pur.90%, g, Ratio
1.6F ] 16F 1.6F
x 1.4F NA61/SHINE preliminary x 140 x 1404
€ 12F £ 12F € 12F M
3 4 M 8 4 PO I 3 L b oot
T | ! R T A SR M T iFSSLe s et S0 g
S o0s8f S 08 S o08f
2 o6f S o6l S o6
S o0af & oaf S o0af
0.2F eqmo 0.2F o 0.2 oq a0
e L T
% 20 40 60 80 100 120 % 20 20 60 80 100 120 % 20 20 60 80 100 120
MeV/c MeV/c
g, (Mevic) q.,( ) q.( )
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Aprt distributions: NA61 data vs EPOS

o Ar+Sc at 150A GeV/c: Apy = 1/2\/(px1 — px,)? + (py, — p,)? distributions of
protons selected for intermittency analysis

Ar+Sc NA61, cent.10-15%, pur.90%, ApT Ratio Ar+Sc EPOS, cent.10-15%, pur.90%, ApT Ratio

[

eq,, ratio

=
» a1

NA61 data  **™ - EPOS

=t
~ o
e

I
w
=
w
o

=t
\'_‘\\\\\\\

NA61/SHINE preliminary NA61/SHINE preliminary

=
N

\'_‘\ T T T \-
Ratio data/mix
S

Ratio data/mix
N

www'_‘ww

0-9~"20""20 60 80 100 120 0-9""206"40 60 80 100 120
Ap, [MeVic] Ap, [MeVic]
Significant peak Flat distribution

at APT -0

@ In NA61 data, we see strong correlations in Apr — 0 = indication of
intermittent behaviour
[ K. Werner, F. Liu, and T. Pierog, Phys. Rev. C 74, 044902 (2006)]
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Aprt distributions & Fo(M): NA61 data vs EPOS

Ar+Sc NA61, cent.10-15%, pur.90%, ApT Ratio Ar+Sc EPOS, cent.10-15%, pur.90%, ApT Ratio
1

*q,, rato

EPOS

=
>
T

NA61 data o

=t
o
T

L
w
I
w
e

Ratio data/mix
[
By

Ratio data/mix
=
N

1.1 :
1 1
Ew n
g 09\\\‘\\\‘\\\‘\\\‘\\\‘\\\ 09:\\\‘\\\‘\\\‘\\\‘\\\‘\\\
I 0 20 40 60 80 100 120 0 20 40 60 80 100 120
s Ap, [MeV/c] Ap, [MeV/c]
w
P4
I 5.6 Ar+Sc EPOS,
@ 4 Ar+Sc NA61, ' cent.10-15%, pur > 90%
© cent.10-15%, pur > 90%
=z
s s
NS =
2+ . . . . 42 3 . ; : !
0 5000 10000 15000 20000 0 5000 10000 15000 20000
M2 M2

N. Davis (IFJ PAN) NAG61/SHINE intermittency analysis February 22, 2019 22/53



NAG61/SHINE: Ar+Sc at 150A GeV/c: Fa(M), AFa(M)

Fo(M)

AFH(M)

4 Ar+Sc NA61,
cent.0-5%, pur > 90%

datg —e— =
mixed ——

2 4+ T T T
0 5000 10000 15000 20000
M2
NA61 Ar+Sc 150,
] cent.0-5%, pur > 90%
0751 ¢pp=022+007

—-0.12

power law fit ——

0 5000 10000 1500020000
MZ
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FoMD)

AFH(M)

4 Ar+Sc NA6T,
cent.5-10%, pur > 90%

mixed ——

2+ T
0 5000 10000 15000 20000
M2

NA61 Ar+Sc 150,
] cent.5-10%, pur > 90%

— 0.36+0-10
$2,8 =036251;

power law fif ——

0 5000 10000 1500020000
M2
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FyM)

Ar+Sc NA61,
cent.10-15%, pur > 90%

5000 10000 15000 20000
M2

NA61 Ar+Sc 150,
cent.10-15%, pur > 90%

~ 0.50+0.07
dqfq’%
power law fit ——

$2,8

0

5000 10000 1500020000

M2
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NAG61/SHINE: Ar+Sc at 150A GeV/c: Fo(M

NA61/SHINE preliminary centrality I
4 Ar+Sc NA6T, 4 Ar+Sc NA6T, 4 Ar+Sc NA61,
cent.0-5%, pur > 80% cent.5-10%, pur > 80% cent.10-15%, pur > 80%
s s s
2 2 2
25 data —e— 25 data —e—
mixed —— mixed ———
2+ T T T T 2+ T 2
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
M? M? M?
4 Ar+Sc NA6T, 4 Ar+Sc NA61, 4 r+Sc NAG61,
cent.0-5%, pur > 85% cent.5-10%, pur > 85% cent. 10 15%, pur > 85%
s = =
iy e iy
5 mixed ——— 2 mixed
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
M? M? M?
4 Ar+Sc NA6T, 4 Ar+Sc NA6T, 4 Ar+Sc NA61,
cent.0-5%, pur > 90% cent.5-10%, pur > 90% cent.10-15%, pur > 90%
~ 35 P I~
€ € g
e 3 o e
25 data —e—
9 mixed ———
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
2 2 2
M M M
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/SHINE: Ar+Sc at 150A GeV/c: AFs(M)

NA61/SHINE preliminary centrality I
19 Ar+Sc NA61, LIS Ar+Sc NAGT, 1 Ar+Sc NA61,
cent.0-5%, pur > 80% cent.5-10%, pur > 80% cent.10-15%, pur > 80%
= 075 data —e— = 075 1 data —e— = 0.75 datg —e—
s 05 power law fit —— s 05 power law fit —— s 05 power law fit ——
o o 21 i 7
S 025 b2 =037008 S 0251 ¢o5=07212 S 025 $25=058159
0 1 y 0 1 0 1
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10 100 1000 10000 10 100 1000 10000 10 100 1000 10000
M2 M2 M2
15 Ar+Sc NAGT, 13 Ar+Sc NAGT, 1 Ar+Sc NAG1,
cent.0-5%, pur > 85% cent.5-10%, pur > 85% cent.10-15%, pur > 85%
075 4 data —e— 0754 data —e— 075 data —e—
g 05 power law fit —— g 05 power law fit ——— g 05 power law fit —
<X : =X : X :
% o5 | $2.8=02510%] % ops | 26=03110% % 025 | #2p=052'002
0 1 : 0 1 01
-0.25 -0.25 -0.25
10 100 1000 10000 10 100 1000 10000 10 100 1000 10000
M? M2 M2
19 Ar+Sc NA61, 19 Ar+Sc NAG6T, 1 Ar+Sc NA61T,
cent.0-5%, pur > 90% cent.5-10%, pur > 90% cent.10-15%, pur > 90%
075 1 data —e— 075 1 data —e— 075 data —e—
s 05 1 power law fit —— s 05 power law fit —— s 05 power law fit ——
<X : . <X : 07 X : B .
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(O e 07 0 7
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10 100 1000 10000 10 100 1000 10000 10 100 1000 10000
2 2
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NA61/SHINE: Ar+Sc at 150A GeV/c: Summary

@ Based on CMC simulation®, we estimate a fraction of 0.7% critical protons are
present in the sample.

1 — —
I NA61/SHINE preliminary
o8} |
0.6 | 1
N H ]
< : HE
04 | } ﬁ ]
02 | ﬁ pur.80% —e— -
I pur.85% —— |
ol bur.90% =

0 5 10 15

% centrality
* [Antoniou, Diakonos, Kapoyannis and Kousouris, Phys. Rev. Lett. 97, 032002 (2006).]
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Ar+Sc EPOS: F>(M), AF2(M), ¢ bootstrap distribution

56 Ar+Sc EPOS, 56 Ar+Sc EPOS,
: cent.0-5%, pur > 90% cent.5-10%, pur > 90%

s S s 2
& &g o
4.6
4.4
42
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
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’E‘ 05 3 power law fit ——— ’E‘ 05 1 power law fit ——— ’2‘ 05 power law fit ——
& & 2
< 025 < 025 <
0 % 0 3
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2 02 [
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Intermittency analysis at 150/158A GeV/c: Summary

F(M)

FoVD

NA61/SHINE preliminary

4 Ar+Sc NA61, 4 Ar+Sc NA61,
cent.5-10%, pur > 90% cent.10-15%, pur > 90%

FM)
Fo(M)

05 NA61 Be+Be data —e—
NA61 Be+Be mixed +——

0 5000 10000 15000 20000
MZ

0 5000 10000 15000 20000
M2
'C'+C @ 158A GeV (NA49)

data
mixed x

Pb+Pb @ 158A GeV (NA49)

25 {8 'SI'+Si@ 158A GeV (NAL9) 25 s
H
2 2
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
2
M M2 M2

@ Indication of intermittency effect in middle-central NA61/SHINE Ar+Sc collisions

@ First possible evidence of CP signal in NA61/SHINE

o Effect quality increases with increased proton purity selection, up to 90% proton
purity; EPOS does not reproduce observed effect.
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40Ar + 49S¢ at 75A GeV/e —

Cuts investigation — control subset

We need an independent data set in order to investigate/optimize cut selection
We randomly partition original set of events:

@ 30% of events = control subset

@ 70% of events = analysis subset
Event statistics in control subset:

@ 0- 5% most central = 166K events

@ 5-10% most central = 160K events

e 10-15% most central = 157K events

Event statistics in analysis subset:
@ 0- 5% most central = 387K events
@ 5-10% most central = 375K events
@ 10-15% most central = 367K events

In what follows, we present intermittency analysis results on the control &
analysis subsets
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Fo(M), AF>(M) — Ar+Sc 75 NA61 (analysis, 90% purity)
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AF>(M), Apr — Ar+Sc 75, 150 comparison (analysis)
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AF>(M) — Ar+Sc 75, 150 comparison (analysis)

@ AF>(M) bootstrap distributions — contour map of sigmas from the median

NAG61 Ar+Sc 75, NA61 Ar+Sc 150,
cent.10-15%, pur > 90% cent.10-15%, pur >

15
1.0

= 05

<
00
-05)

10000
I

" sigmas ©
AFy(M)

@ ~ 10 separation of AF2(M) from zero in Ar+Sc 75
@ ~ 2 — 30 separation of AF,(M) from zero in Ar+Sc 150
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Fa/AFs(M) — CMC ArSc150 + 99.3% noise (10M run)

45 CMC Ar+Sc 150, CMC Ar+Sc 150,
cent.10-15%, bkg = 0.993 1 1 cent.10-15%, bkg = 0.993
4 data +—e— 0.75 4
- mixed +——— o 0.5 4
s 35 P E& 0.25 /
oY % 0 == e
3 -0.25
2.5 -0.5 1 datg +—e—
-0.75 1 9,=0.826 +/-0.006 ——
0 5000 10000 15000 20000 0 5000 10000 1500020000
M2 M2

@ F>(M) and AF,(M) values have converged to almost their “true” (expected)
values

@ intermittency index ¢ is very close to the theoretically expected value of a pure
critical system.

@ We can now use these settled F>(M) values to check the convergence of
various sub-sampling schemes — starting with non-overlapping sub-samples.
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Critical Monte Carlo — spurious signal test

@ We try to estimate how likely it is for a spurious signal to appear in non-critical
events for low statistics.

@ Comparison of Fo(M) of data & CMC is risky due to CMC not including any pair
cuts (TTD, Giny)-
@ In contrast, AF>(M) is relatively safer — pair cuts are applied to both original
data and mixed events.
@ For a statistics of 134 X 150K events, we calculate AF,(M) for:
@ CMC with 100% noise (pure background)

@ We compare resulting AFo(M) to AF>(M) of NA61 ArSc150 data
(10-15% centrality)
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Spurious signal test, background — AF>(M)
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Spurious signal test, background — AF>(M)
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Spurious signal test, background — AF>(M)
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Spurious signal test, background — AF>(M)
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Spurious signal test, background — AF>(M)
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Spurious signal test, background — AF>(M)
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Spurious signal test, background — AF>(M)
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Spurious signal test, background — AF>(M)

CMC Ar+Sc 150, CMC Ar+Sc 150, CMC Ar+Sc 150,
cent.10-15%, bkg = 0, #64 cent.10-15%, bkg = 0, #65 cent.10-15%, bkg = 0, #66
S S s
o o e
< < &
075 ArSC150 —e— 075 ArSC150 —e— 075 ArSC150 —e—
-1 bkg -1 bkg -1 bkg
0 5000 10000 1500020000 0 5000 10000 1500020000 0 5000 10000 1500020000
M2 M? M?
CMC Ar+Sc 150, CMC Ar+Sc 150, CMC Ar+Sc 150,
cent.10- 15/0 bkg =0, #67 cent.10-15%, bkg = 0, #68 cent.10- 15% bkg =0, #69
S S S
o e e
< < &
075 ArSC150 —e— 075 ArSC150 —e— 075 ArSC150 —e—
-1 bkg -1 bkg -1 bkg
0 5000 10000 1500020000 0 5000 10000 1500020000 0 5000 10000 1500020000
M2 M? M?
CMC Ar+Sc 150, CMC Ar+Sc 150, CMC Ar+Sc 150,
cent.10-15%, bkg 0,#70 cent.10-15%, bkg = 0, #71 cent.10-15%, bkg = 0, #72
= S S
o e e
< < <
075 AISC150 —e— 075 ArSC150 —e— 075 ArSC150 —e—
-1 bkg -1 bkg -1 bkg
0 5000 10000 1500020000 0 5000 10000 1500020000 0 5000 10000 1500020000
M2 M? M?

avis (IFJ PAN) NAG61/SHINE intermittency analysis February 22, 2019




Spurious signal test, background — AF>(M)
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Spurious signal test, background — AF>(M)
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Spurious signal test, background — AF>(M)
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Spurious signal test, background — AF>(M)
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Spurious signal test, background — AF>(M)
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Spurious signal test, background — AF>(M)

CMC Ar+Sc 150, CMC Ar+Sc 150, CMC Ar+Sc 150,
cent.10-15%, bkg =0, #118 cent.10-15%, bkg =0, #119 cent.10-15%, bkg = 0, #120
S S s
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Spurious signal test, background — AF>(M)

CMC Ar+Sc 150, CMC Ar+Sc 150, CMC Ar+Sc 150,
cent.10-15%, bkg = 0, #127 cent.10-15%, bkg = 0, #128 1 § cent.10-156%, bkg =0, #129
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Spurious signal test, background — AF>(M) C.I.

bkg vs NA61 Ar+Sc 150,
cent.10-15%, pur > 90%

t  NAO6T Arsc150

4
< 8 g
=3 5
= 9
(o)}
< 28

1

0

1% 5000 10000 15000 20000
M?

@ Average ArSc150 AFz(M) ~ 2 — 3o away from random background AFz(M)
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Summary and outlook

@ We performed intermittency analysis on a variety of medium sized systems, on
central to middle-central collisions: NA49 Si+Si, C+C & Pb+Pb at 158A GeV/c,
as well as NA61/SHINE Ar+Sc at 150A GeV/c & 75A GeV/c;

@ We find an indication of intermittency effect in middle-central NA61/SHINE
Ar+Sc collisions at 150A GeV/c, consistently with our previously published
analysis of intermittency in NA49 Si+Si at 158A GeV/c;

@ In our estimation of a power-law intermittency index ¢, statistical and
systematic errors are significant;

@ In the case of Ar+Sc at 150A GeV/c, 10-15% centrality, a non-zero AFx(M)
signal can be established at ~ 20 confidence level;

@ Establishing a power-law scaling is, however, still challenging.

@ “First possible indication for critical point from NA61/SHINE”
— Larry McLerran, Theoretical Summary talk at CPOD2018.
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Summary and outlook

@ CMC simulation shows Ar+Sc at 150A GeV/c data to be compatible with a
0.5-0.7% critical component of protons;

@ Expanding the analysis to other NA61/SHINE systems (Xe+La, Pb+Pb) and
SPS energies (Ar+Sc) will hopefully lead to a more reliable interpretation of
the observed intermittency signal in terms of the critical point

@ The NA61/SHINE CP task force, led by the IFJ Krakow group, is working on
extending the Ar+Sc scan to lower energies, as well as scrutinizing
intermittency methodology in order to reduce detector dependence and improve
result robustness.
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Thank you!
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Observing power-law fluctuations

Experimental observation of local, power-law distributed fluctuations

U
Intermittency in transverse momentum space (net protons at mid-rapidity)

(Critical opalescence in ion collisions®)

@ Net proton density carries the same critical fluctuations as the net baryon
density, and can be substituted for it.
[Y. Hatta and M. A. Stephanov, PRL91, 102003 (2003)]

@ Furthermore, antiprotons can be dropped to the extent that their multiplicity is
much lower than of protons, and proton density analyzed.

[J. Wosiek, Acta Phys. Polon. B 19 (1988) 863-869]
[A. Bialas and R. Hwa, Phys. Lett. B 253 (1991) 436-438]
*[F.K. Diakonos, N.G. Antoniou and G. Mavromanolakis, PoS (CPOD2006) 010, Florence]
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Observing power-law fluctuations: Factorial moments

@ Transverse momentum space is partitioned pI. . N
into M2 cells L . .
@ Calculate second factorial moments Fo(M) as : - * .
a function of cell size & number of cells M: . @ . .
L. . .
M? < . z .
<#Zni(n/—1)> / : -
Fa(M) = = — / ;
M? . .
(2 2 m) Sl
i=1 / P
’ my, bin | | Mm? number of X
where (.. .) denotes averaging over events. particles in my, bin
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Scaling of factorial moments — Subtracting mixed events

For A < 1 (background domination), AF>(M) can be approximated by:

AFz(e)(M) — F2data(M) _ Fzmix(M) J

For a critical system, AF, scales with cell size (number of cells, M) as:

AFy(M) ~ (M?)** J

where ¢ is the intermittency index.

Theoretical predictions for ¢»

9 () _ 2 () _5

g5 $ye =5(0.66...) ¥y =3 (0.833..))
> ©

§ ; sigmas (neutral isoscalar dipions) net baryons (protons)

'ﬂé % [N. G. Antoniou et al, Nucl. Phys. A 693, 799 (2001)] [N. G. Antoniou, F. K. Diakonos, A. S. Kapoyannis,

K. S. Kousouris, Phys. Rev. Lett. 97, 032002 (2006)]
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Subtracting the background from factorial moments

@ Experimental data is noisy = a background of non-critical pairs must be
subtracted at the level of factorial moments.

@ Intermittency will be revealed at the level of subtracted moments AF>(M).

Partitioning of pairs into critical/background

(n(n = 1)) =(nc(nc — 1)) +{np(np — 1)) + 2{npnc)
—_———

critical background cross term

AF(M) = FS(M)-AM)2 - FP (M) =2 - A(M) - (1 = A(M)) fioe
S— N——— N— S——
correlator data background ratio ::zg

@ The cross term can be neglected under certain conditions
(non-trivial! Justified by Critical Monte Carlo* simulations)

* [Antoniou, Diakonos, Kapoyannis and Kousouris, Phys. Rev. Lett. 97, 032002 (2006).]

N. Davis (IFJ PAN) NAG61/SHINE intermittency analysis February 22, 2019 59/53



Scaling of factorial moments — Subtracting mixed events

For A < 1 (background domination), two approximations can be applied:
@ Cross term can be neglected

@ Non-critical background moments can be approximated by (uncorrelated) mixed
event moments; then,

AR (M) = AFS (M) = FE%(M) — F™ (M) J

For a critical system, AF, scales with cell size (number of cells, M) as:

AFy (M) ~ (M?)** J

where @ is the intermittency index.

Theoretical prediction for ¢»
o¥) =2(0.833..)

net baryons (protons)

universality class,
effective actions

[N. G. Antoniou, F. K. Diakonos, A. S. Kapoyannis,
K. S. Kousouris, Phys. Rev. Lett. 97, 032002 (2006)]
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Critical Monte Carlo (CMC) algorithm for baryons

Lévy walk example

@ Simplified version of CMC* code:

@ Only protons produced 4’ o %
@ One cluster per event, produced by » }‘"‘4; y
- ) uh, b A
random Lévy walk: 4] @,,{\ i !
d®? — /35 ¢, =5/6 vy ®’

e Lower / upper bounds of Lévy walks
Pmin,max Plugged in.

o Cluster center exponential in pr, slope
adjusted by T, parameter. "

e Poissonian proton multiplicity
distribution.

Input parameters

Parameter pmin (MeV)  pmax (MeV)  Apgisson T (MeV)
Value 01—1 800—1200 (Pnonempyy 163

* [Antoniou, Diakonos, Kapoyannis and Kousouris, Phys. Rev. Lett. 97, 032002 (2006).]
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NA49: “C"+C, “Si"+Si, Pb+Pb at 158A GeV/c

@ 3 sets of NA49 collision systems were analysed, at 158A GeV/c
[T. Anticic et al., Eur. Phys. J. C 75:587 (2015), arXiv:1208.5292v5]

@ Factorial moments of proton transverse momenta analyzed at mid-rapidity

@ Fragmentation beams used for C and Si (“C"=C,N ; “Si"=Si,Al,P) — components
were merged to enhance statistics

Fo(M)

25 data e
mixed x 0.5
2
0 5000 10000 15000 20000 0 5000 10000 15000 20000
2 2
M M

o Fitwith AF2(M ; C,¢5) = €€ - (M2)?*, for M2 > 6000
@ No intermittency detected in the “C"+C, Pb+Pb datasets.
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NA49: “C"+C, “Si"+Si, Pb+Pb at 158A GeV/c

@ Evidence for intermittency in “Si"+Si — but large statistical errors.

140
12
0 "Si"4Si
100
- g
< g 80
< 3
: = e +0.38
+0.38 40 $2,8 =096 525
05 2,8 =096 525 2 ’T
0 5000 10000 15000 20000 0 05 1 15 2 25 3
M? @

@ Bootstrap distribution of ¢, values is highly asymmetric due to closeness of
d
Fi (M) to F™(M).
@ Based on CMC simulation, we estimate a fraction of ~ 1% critical protons are
present in the sample.

e Estimated intermittency index: ¢z.s = 0.96*0-38 (stat.) + 0.16(syst.)

[T. Anticic et al., Eur. Phys. J. C 75:587 (2015), arXiv:1208.5292v5]
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Ar+Sc at 150A GeV/c: NA61 data vs EPOS

EPOS — proton pr statistics

Centrality #events  (p)jp|<1.5 GeV. |ycm|<0.75 Apy.y
Non-empty  With empty

0- 5% 293,412 3.06+1.60 2.89+1.70 0.35-0.43
5-10% 252,362 2.72+145 249+1.58 0.35-0.43
10-15% 274,072 2.45+1.33 2.16+1.48 0.35-0.43

40Ar +4°Sc NA61 data — proton pr statistics

Centrality #events  (p)jpr|<1.5 GeV. |ycm|<0.75 Apy.y
Non-empty  With empty

0- 5% 144,362 3.44+1.79 3.30+1.89 0.46-0.58
5-10% 148,199 3.00+1.61 2.79+1.73 0.46-0.58
10-15% 142,900 2.81 +1.583 258+1.66 0.45-0.57
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px.y spectra comparison — NA61 vs EPOS (0 — 15%)

Ar+Sc @150 NA61, P, pdf distribution Ar+Sc @150 NA61, y pdf distribution Ar+Sc @150 NA61, P, pdf distribution

{

15
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Proton selection

dE/dx

NA61/SHINE preliminary NA61/SHINE preliminary
d : 10* 1.8¢
. 175 dE/dx vs p
tot
5 16F
10 155 -
X 14¢
10 18-
T 12F .
115
10 {E
. 0.9 1
S . H E | | sy . .
05 52 O%5 0 05 15 2
Log,, [P,/ 1 GeVic] Log,, [P,/ 1 GeVic]

@ Employ p;o: region where Bethe-Bloch bands do not overlap
(3.98 GeV/c < ptor < 126 GeV/c)

@ Fit dE/dx distribution with 4-gaussian sum for a = x, K, p, € — Bins: pot, p1
@ 30 Bins in Logio(pror): 109¢ — 102" GeV/c
@ 20 Binsin p7: 0.0 —» 2.0 GeV/c
@ Proton purity: probability for a track to be a proton, $, = p/(m + K + p + €)
@ Additional cut along Bethe-Blochs

(avoid low-reliability region between p and K curves)

N. Davis (IFJ PAN) NAG61/SHINE intermittency analysis February 22, 2019 66 /53



dE/dx vs p;or (proton ID)

dE/dx

dE/dx vs [

dE/dx

DN OL L UL e

S RN R R e L1 1
52 0% s 0 o5 1 15 2

Log,, [P,/ 1 GeVic] Log, [P,/ 1 GeVic]

@ Avoid p;,; region where Bethe-Bloch curves overlap
(3.98 GeV/c < pror < 126 GeV/c)

Using Hans Dembinski/Raul R Prado’s dE/dx fitting software — Bins: p;ot, p1
Presented in Moscow meeting by Prado, Herve & Unger

30 Bins in Logio(pror): 10°6 — 10%" GeV/c

20 Bins in pr: 0.0 —» 2.0 GeV/c

Preliminary p selection: 90% purity removing deuterons from the model

Cut along Bethe-Blochs: BB, + 0.15(BBx — BB))
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dE/dx simulation & proton purity assignment in EPOS

dE/dx

dE/dx vs Pyt dE/dx vs Pyt

18 18F
17F 17F
16F 16F
E E .
15 F 15F 10
14 14F
x5 E
13 o 13F
° E
12 12F 10
11E 11E
1E 1E
o e 09F 1
E E ) e
08y, 0.5 . 085 0 0.5 1 5 2
Log,, [P,/ 1 GeV/c] Log,, [P, /1 GeV/c]

@ Used dE/dx spectra from Ar+Sc @150 data in the 6% - 18% centrality interval

@ For each track, assign a dE /dx value based on particle species and phase
space bin

@ Apply dE/dx & purity cuts identical to NA61/SHINE data
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Improving calculation of F>(M) via lattice averaging

@ Problem: With low statistics/multiplicity, lattice boundaries may split pairs of
neighboring points, affecting Fo(M) values (see example below).

@ Solution: Calculate moments several DISplgced lattice
times on different, slightly displaced — a simple example

lattices (see example) M=3, lattice for one event

—M=3

@ Average corresponding F>(M) over all
lattices. Errors can be estimated by
variance over lattice positions.

—M=3 displaced

original lattice
. . [-1.5,1.5]x[-1.5,1.5]
displaced lattice

@ Lattice displacement is larger than
experimental resolution, yet maximum 05
displacement must be of the order of
the finer binnings, so as to stay in the
correct pr range. S b, (Gev)

[1.2,1.8)x[-1.2,1.8]

p,, (GeV)

,_
o
&
S
@
o
o
&
-
"
o
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Improved confidence intervals for ¢, via resampling

@ In order to estimate the statistical errors of AF>(M), we need to produce
variations of the original event sample. This, we can achieve by using the
statistical method of resampling (bootstrapping) =

@ Sample original events with replacement, producing new sets of the same statistics
(# of events)
o Calculate AFo(M) for each bootstrap sample in the same manner as for the
original.
e The variance of sample values provides the statistical error of AFo(M).
[W.J. Metzger, “Estimating the Uncertainties of Factorial Moments”, HEN-455 (2004).]

@ Furthermore, we can obtain a distribution P(¢p2) of ¢» values. Each bootstrap
sample of AF,(M) is fit with a power-law:

AFo(M;C, 2) = & - (M) )

and we can extract a confidence interval for ¢» from the distribution of values.
[B. Efron, The Annals of Statistics 7,1 (1979)]
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Split tracks; the g, cut in analysed datasets

@ Split tracks can create false positive for intermittency = must be reduced or
removed.

@ giny-test —distribution of track pairs: g;ny (pi, pj) = %,/—(p,— -pj)2, pi:
4-momentum of it track.
@ Calculate ratio g#2!2 /g™ xe? = peak at low gjn, (below 20 MeV /c): possible

inv
split track contamination.
2 @c+c] (b) "Si"+Si (c) Pb + Pb (00B)
a I i C,
14F i MW e
£
12
x 0.8
E 15 + +
8 T e L
3 os8f .
S ;i rhygrhygrt
5 \ TS SoA S TS 0al-
04
05 0.2~
0.2
()= L Il Il Il S Il | Il L Il | L L
20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120
qmv(MeV/c) qW(MeV/c) q. (MeV/c)

@ Anti-correlations due to F-D effects and Coulomb repulsion must be removed
before intermittency analysis = “dip” in low g;,,, peak predicted around 20
MeV/c [Koonin, PLB 70, 43-47 (1977)]

@ Universal cutoff of gj,, > 25 MeV/c applied to all sets before analysis.
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Ratio data/mix

08

Ratio data/mix

06

NA49 analysis — Apr distributions

@ We measure correlations in relative pr of protons via

Apr = 1/2\/(Px1 = Px)? + (Pvy = Py)?

(b) Pb + Pb

) "C"+C
121~ m
# W W [t
0.6
04 2‘0 4‘0 E‘l} 8‘0 H‘BD 1

1 Qﬂ (©) "Si"+Si
e

(d) CMC (Si+Si)

mwmmrﬁm

[P i S P

[ S N N AU PRI B

N. Davis (IFJ PAN)

Il L Il
6 8 100 1
Apr (MeV/c)

NAG61/SHINE intermittency analysis

@ Strong correlations for

Apr — 0 indicate power-law
scaling of the density-density
correlation function =
intermittency presence

We find a strong peak in the
“Si”+Si dataset

A similar peak is seen in the
Apr profile of simulated
CMC protons with the
characteristics of “Si"+Si.
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Split tracks & the g;,, cut

@ Events may contain split tracks: sections of the same track erroneously
identified as a pair of tracks that are close in momentum space.
@ Three cuts to root them out:
@ Ratio of points / potential points in a track (removes most)
@ Minimum track distance in the detector (pair cut)
@ g,,, cut (pair cut, physics-significant)
@ giny distribution of track pairs probed in order to root the rest out:

Ginv(Pis Pj) = 3+/—(Pi — pj)2 pi : 4-momentum of /" track.

@ We calculate the ratio of gd2t@/gmixed
my my
ArtSc NAG1, cent.0-5%, pur.90%, g Ratio Ar+Sc NABL, cent.5-10%, pur.90%, q_ Ratio Ar+Sc NAGL, cent.10-15%, pur.90%, q_ Ratio
1.6F 1.6F 1.6F
NA61/SHINE preliminary
x 14F x 14f x 14pq
€ 12F € 12fF € 12F M
3 M ] ittt o S L
2 \ PG e = TR L © P gmerTess
T 0.8¢ T 0.8f T 0.8¢
2 osf 2 os6f 2 osf
& oaf & oaf & o4
0.2F oo 0.2F e o 0.2f oo o
L L L L L L L L L L L L
% 20 40 60 80 100 120 % 20 740 60 80 100 120 % 20 20 60 80 100 120
MeV
q., (MeV/c) qinv( eV/c) qa., (MeV/c)
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Split tracks & the g;,, cut

@ A peak at low g;,, (below 20 MeV//c) indicates a possible split track
contamination that must be removed.

@ Anti-correlations due to F-D effects and Coulomb repulsion must be removed
before intermittency analysis = “dip” in low g;,,, peak predicted around 20
MeV/c [Koonin, PLB 70, 43-47 (1977)]

@ Universal cutoff of g;,, > 7 MeV/c applied to all sets before analysis.

Ar+Sc NA61, cent.0-5%, pur.90%, qmv Ratio Ar+Sc NA61, cent.5-10%, pur.90%, A:|”W Ratio Ar+Sc NA61, cent.10-15%, pur.90%, g, Ratio
1.6F ] 16F 1.6F
x 1.4F NA61/SHINE preliminary x 140 x 1404
€ 12F £ 12F € 12F M
3 4 M 8 4 PO I 3 L b oot
5 | SRR e e g 5 R R 5 Mg stggad
S o0s8f S 08 S o08f
2 o6f S o6l 2 o6f
S o0af & oaf S o0af
0.2F oq o 0.2F o 0.2 oq a0
e L T
% 20 40 60 80 100 120 % 20 20 60 80 100 120 % 20 20 60 80 100 120
MeV/c MeV/c
g, (Mevic) q.,( ) q.( )
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Noisy CMC (baryons) — estimating the level of background

@ F»(M) of noisy CMC approximates “Si"+Si for A ~ 0.99

) AFée)(M) reproduces critical behaviour of pure CMC, even though their
moments differ by orders of magnitude!

4 ©®
3 250
200 CMC Si
g 150
+0.1
5
2.5 =0.807
2- 2 100 518
50 ’
1o 0 L \ } I =t
® Si+A data ® Si+A data 0 2 25 3
A CMC with noise A CMC with noise
10°4 A pure CMC @
0y T T T T U
0 5000 10000 15000 20000 5000 10000 20000
M M

@ Noisy CMC results show our approximation is reasonable for dominant
background.
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Ratio data/mix

Ratio data/mix

Ar+Sc NAGL, cent0-5%, pur.80%, q Ratio
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Ratio data/mix Ratio data/mix

Ratio data/mix
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Apr proton distributions — NA61/SHINE

Ar+Sc NAGL, cent.0-5%, pur.80%, Ap_Ratio
5 "
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NAG61/SHINE: Ar+Sc at 150A GeV/c: ¢, bootstrap dist.
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giny & Apt distributions — EPOS
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Intermittency analysis at 150/158A GeV/c: Summary

A+A at 150/158A GeV/c
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@ Indication of intermittency effect in middle-central NA61/SHINE Ar+Sc collisions
@ First possible evidence of CP signal in NA61/SHINE

@ Effect quality increases with increased proton purity selection, up to 90% proton
purity; EPOS does not reproduce observed effect.
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giny distributions — NPratio & TTD cuts (control subset)
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@ g, distribution seems to improve with TTD cut, apart for large fluctuations in
the 1st bin

@ Removing 1st bin: = Cut: g;,, > 6 MeV/c
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Apr distributions — NPratio & TTD cuts (control subset)

@ Applied cuts: TTD > 2cm, g;,, > 6 MeV/c, PP
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@ No enhanced correlations for Apr — 0 in the 1st and 2nd centrality bins.
@ An enhancement in the 2nd bin for intermediate Apr = 1st order region?
@ “Sort of” an enhancement in the 3rd bin for Apr — 0
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Independent bins test

@ We attempt to mitigate the correlated bin effect by using non-overlapping event
subsets for different M values
@ As afirst test, we use the full control + analysis statistics in the 3rd centrality bin
@ Initial test for Ar+Sc 75:
o statistics in the 3rd centrality bin = ~ 520K events
@ Random partition of events = 5 sets X ~ 100K events
@ Process repeated for Ar+Sc 150:
@ statistics in the 3rd centrality bin = ~ 150K events
@ Random partition of events = 5 sets x ~ 30K events
@ Independent bins test applied on a MC with a critical component (CMC), in
order to examine the efficacy of Fo(M) on a system with a known
proton-proton correlation function
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AF>(M) — Ar+Sc 75 NA61 (independent samples)
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AF>(M) — Ar+Sc 150 NA61 (independent samples)
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AFy(M) —

AFH (M)

AFH (M)

CMC Ar+Sc 150 10M & indep. bins (2M)

@ The original ¢ fit for the 10M set is shown for reference (red line).
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@ AF>(M) of independent bins almost converged to the correct trend
@ Their ¢» (orange line) seems very sensitive to slight displacement

(too few points!).
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Spurious Signal Test — Conclusions

@ No observed cases of background AF>(M) above NA61 ArSc150 data.

@ ~ 6% of background samples within 1 sigma of NA61 ArSc150 data AF,(M)
(from below).

@ ltis still not clear what possible distortions are introduced by pair cuts in NA61
data; it may be possible to simulate g;,, cut in CMC, but this will require an
extension of CMC to 3D (p1 X ycm)-
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AF>(M), Apt — Ar+Sc 75, 150 comparison (control)
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