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* Practical exercise — pattern recognition using KERAS
e Generative networks
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How could we get rid of Monte Carlo?

® The Monte Carlo simulation used for training Machine Learning methods
always differs to some extend from data.

® So, the best would be to train algorithms on data...
® .. =>towards unsupervised learning?

® ... or maybe only weakly supervised?
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Unsupervised learning:

No training datasets are provided, the data is clustered into different classes
based on similarity.
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Weakly Supervised Classification
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® A new approach in Machine Learning: weakly supervised classification in
which class proportions are the only input into the machine learning

algorithm.

® Quark versus gluon tagging - weakly supervised classification can match
the performance of fully supervised algorithms.

® By design, the new algorithm is insensitive of MC mis-modelling — trained on

data.

® Problem: we have to
find in data what is the
proportion of gluon and
guark jets.

® Maybe template fits in
one/some variable/s
using again MC?
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Learning from Data ﬂ?
Classification w/o Labeling

® A step even further is Mixed Sample 1 Mixed Sample 2
classification w/o labeling (
(CWolLa)
https://arxiv.org/abs/1708.02949

® A classifier is trained to
distinguish sample 1 from
sample 2, which are mixtures of
signal and background with \
different (and unknown)
fractions.

® Such a classifier is optimal for
distinguishing signal from Classifier
background
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Adversarial Neural Network

® ANN is combination of two regular NNs
® | = | (classifier)-AL(adversary), where A is a hyper-parameter

® The adversary function explicitly penalizes the classifier for using
information from certain (poorly modeled) variables.
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Toy example with Adversarial NN

® Most classifiers we use are trained with
nominal values of systematics nuisance
parameters

® Some might be poorly modeled in MC.

® These classifiers have dependence on these
nuisance parameters and are sub-optimal for
real data (top plot — dependence of classifier on
parameter Z).

® ANN can mitigate the classifier dependence on
the nuisance parameter (bottom plot).

Toy example: distinguish two 2D Gaussians,

the parameter Z is a shift between their centers.

arXiv:1611.01046
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Generative Adversarial Nets (GANS)

® GANSs were introduced lan Goodfellow and others in 2014 . Yann LeCun
called adversarial training “the most interesting idea in the last 10 years in
ML.” https://arxiv.org/abs/1406.2661

® GANS’ can learn to mimic any distribution of data. They can be taught to
create worlds similar to our own in any domain: images, music, speech,
prose. They are robot artists!
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How do GANs work?

® Discriminative algorithms - classify input data; given the features, they
predict a label or category to which that data belongs (signal or background)

® Generative algorithms — do the opposite, assuming the event is signal, how
likely are these features?

® Another way to distinguish discriminative from generative like this:

— Discriminative models learn the boundary between classes
— Generative models model the distribution of individual classes
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Blind forger and detective

D: Detective

R: Real Data G: Generator (Forger) I: Input for Generator

The forger has never seen Mona Lisa, but gets the judgments of detective
and tries to fool him (i.e. paint something that looks like Mona Lisa).

They both (forger and detective) have to train in parallel (important), since if
detective is to clever the forger will never paint anything acceptable.
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GANs example — hand-written digits

Training set V/ N Discriminator

Random A ¢ —
7 i
Generator —/ Fake image

® Training set — MNIST: hand-written digits supplied by US post.
® Discriminator — convolutional neural network labeling images as real or fake.

® Generator - inverse convolutional network (while a standard convolutional
classifier takes an image and downsamples it to produce a probability, the
generator takes a vector of random noise and upsamples it to an image).

Implementation: Python code using Keras interface and TensorFlow backend.
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2400 cycles 8000 cycles 19900 cycles

Each cycle digits look more and more realistic.
Example code: gan_mw.py on https.//indico.ifi.edu.pl/event/232/

15.05.2018 M. Wolter 14




ils

Could GANs be useful in physics?

Example - GANs can be used to speed up the Monte Carlo simulation

® LHCb project — speed up calorimeter simulation

Distributions inside calorimeter regions (bins represent different energy levels)
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https://indico.cern.ch/event/668017/contributions/2947021/attachments/1629774/2597329/IML_18 Zakharov.pdf
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Wasserstein GANs in HEP
(modification of GANS)

® Conditional Wasserstein GANSs for fast simulation of electromagnetic showers

in a CMS HGCAL prototype.

— 0O(1000) faster simulation! Still work to be done...
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® Pierre Auger experiment — refinement

of the simulation to fit better to the data
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Simulation
Data
Refined Simulation
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https://indico.cern.ch/event/668017/contributions/2947033/attachments/1629594/2597027/WGAN _JointTalk.pdf
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Conclusions

® Many new methods were developed recently.

® Machine Learning approach becomes to be used not only
for classification, but also for other tasks (Monte Carlo
simulation, tracking etc).

® Advanced ML techniques have wider applications within
HEP community.

® New approach to training — data driven training?
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Qualification task

® Task - recognize geometrical figures using Deep NN
® Generation of images:

— 10 000 images
— Generate 32x32 pixel images of: circle, square or triangle
— Different sizes and positions (including rotation)

triangle circle square square triangle

E

triangle triangle

triangle

square

12.03.2019 M. Wolter, Machine Learning



https://indico.cern.ch/event/668017/contributions/2947021/attachments/1629774/2597329/IML_18_Zakharov.pdf

Simple fully connected
network

® Simple two layer fully connected network built

— Two hidden layers, 512 nodes in each layer

— One output layer — 3 nodes (one node for each
shape)

— Output: three numbers giving the ,probability” of each

figure shape.

Total params: 788,995
Trainable params: 788,995
Non-trainable params: 0

OPERATION DATA DIMENSIONS  WEIGHTS(N)

Input
Reshape

Flatten

Dense 524800
relu

Dense 262656
relu
Dense
softmax
Reshape
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reshape 1 input: InputLayer

'

reshape 1: Reshape

'

flatten 1: Flatten

'

dense 1: Dense

'

dense 2: Dense

'

dense 3: Dense

'

reshape 2: Reshape
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Simple network performance

Training Loss vs Validation Loss Training Accuracy vs Validation Accuracy
i e : tfr;iization
g | Overtraini
e Validation |loss doesn’t
get smalle
0 5 10 15 Nuii) of Epoc2h55 30 0 5 10 15 I\lufnt)mc EDOShSS 30 35 40 45
- - 2500 Confusion matrix — shows which
_ classes are misclassified.
- 2000
S 2.5e+02 1500 Accuracy: 79.51%
1000
Code for KERAS network:
™~ 500

https://indico.ifl.edu.pl/event/232/
file: figure _cnn_simple.py
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Simple network performance
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Convolutional network ﬂ?

® Bigger, convolutional deep neural network
® Uses Conv2D layers, MaxPooling2D and Dropout layers
® Performance:

Training Loss vs Validation Loss Training Accuracy vs Validation Accuracy
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Convolutional network
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Your task

® Your task: IMPROVE THE SIMPLE MODEL. Try to match and outperform
the network above!

® [ et’s make a competition!

Competition results: write your results here:

https://docs.google.com/document/d/1Y63SPeJRx95JtSpMqemniQxKcO-WqGQf4AgXWCveSyk/edit?usp=sharing

Good luck!
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