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Successes in deep learning - NN with ﬂ?
multiple hidden layers

® Success due to the combination of factors:
1) speeding up the stochastic gradient descent algorithm with graphics
processors GPU,
2) using much larger training sets,
3) using new learning algorithms, including randomized algorithms such as
dropout*? (dropping out random neurons while training)
4) pre-training the initial layers of the network with unsupervised learning
methods such as autoencoders3+#.
® The approach 4) attempts to learn a useful layered representation of the
data without having to backpropagate through a DNN; standard gradient
descent is only used at the end to fine-tune the network.
With these methods, it became common to train DNNs of five or more

layers.

! Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, |. & Salakhutdinov, R. R. Improving neural networks
by preventing co-adaptation of feature detectors. Preprint at http://arxiv.org/abs/1207.0580 (2012).

2 Baldi, P. & Sadowski, P. The dropout learning algorithm. Artif. Intell. 210, 78-122 (2014).

3 Hinton, G. E., Osindero, S. & Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 18,

1527-1554 (2006).
“ Bengio, Y. et al. in: Advances in Neural Information Processing Systems 19 (MIT Press, 2007).
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A very nice review

Deep learning, Yann LeCun, Yoshua Bengio, Geoffrey Hinton,
doi:10.1038/nature14539

REVIEW

doi:10.1038/nature 14539

Deep learning

Yann LeCun", Yoshua Bengio® & Geoffrey Hinton**

Deep learning allows computational models that are composed of multiple processing layers to learn representations of
datawith multiple levels of abstraction. These methods have dramatically improved the state -of-the-art in speech rec-
ognition, visual object recognition, object detection and many other domains suchas drug discovery and genomics. Deep
learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine
should change its internal parameters thatare used to compute the representationin each layer from the representation in
the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and
audio, whereas recurrent nets have shone light on sequential data such as text and speech.

achine-learning technology powers many aspects ofmodern
Mm{l{'l)': from web searches to content filtering on social net-

waorks to recommendations on e-commerce websites, and
it is increasingly present in consumer products such as cameras and
smartphones. Machine-learning systems are used to identify objects
in images, transcribe speech into text, match news items, posts or
products with users’ interests, and select relevant results of search.
Increasingly, these applications malke use of a class of techniques called
deep learning.

Conventional machine-learning techniques were limited in their
ability to process natural data in their raw form. For decades, con-
structing a pattern-recognition or machine-learning system required
careful engineeringand considerable domain expertise to design a fea-
ture extractor that transformed the raw data (such as the pixel values
of an image} into a suitable internal representation or feature vector
from which the learning subsystem, often a classifier, could detect or
classify patterns in the input.

Representation learningisa set of methods that allows a machine to
be fed with raw data and to automatically discover the repre sentations
needed for detection or classification. Deep-learning methods are
representation-learning methods with multiple levels of representa-

intricate structures in high-dimensional data and is therefore applica-
ble to many domains of science, businessand povernment. In addition
to beating recordsin image recognition'~*and speech recognition™”, it
hasbeaten other machine-learning techniques at predictingthe activ-
ity of potential drug molecules®, analysing particle accelerator data™",
reconstructing brain circuits'’, and predicting the effects of mutations
in non-coding DNA on gene expressionand disease”", Perhaps more
surprisingly, deep learning has produced extremely promising results
for various tasks in natural language understanding"’, particularly
topic classification, sentiment analysis, question answering' and lan-
guage translation'*"”,

We think that deep learning will have many more successes in the
near future because it requires very little engineering by hand, so it
can easily take advantage ofincreasesin the amount of available com -
putation and data. New learning algorithms and architectures that are
currently being developed for deep neural networks will only acceler-
ate this progress.

Supervised learning
The most common form of machine leamning, deep or not, is super-
vised learning. Imagine that we want to build a system thatcan classify

, Machine learning
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Searching for exotic particles in high-energy
physics with deep learning

P. Baldi!, P. Sadowski! & D. Whiteson?

Collisions at high-energy particle colliders are a traditionally fruitful source of exotic particle
discoveries. Finding these rare particles requires solving difficult signal-versus-background
classification problems, hence machine-learning approaches are often used. Standard
approaches have relied on ‘shallow’ machine-learning models that have a limited capacity to
learn complex nonlinear functions of the inputs, and rely on a painstaking search through
manually constructed nonlinear features. Progress on this problem has slowed, as a variety of

techniques have shown equivalent performance. Recent advances in the field of deep learning
make it possible to learn more complex functions and better discriminate between signal and
background classes. Here, using benchmark data sets, we show that deep-learning methods
need no manually constructed inputs and yet improve the classification metric by as much as
8% over the best current approaches. This demonstrates that deep-learning approaches can
improve the power of collider searches for exotic particles.

5.03.2019 M. Wolter, Machine learning
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Exotic Higgs decays
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Figure 1 | Diagrams for Higgs benchmark. (a) Diagram describing the

signal process involving new exotic Higgs bosons HO and H*. (b) Diagram
describing the background process involving top quarks (t). In both cases,

the resulting particles are two W bosons and two b-quarks.
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Figure 2 | Low-level input features for Higgs benchmark. Distributions in

¢vjjbb events for simulated signal (black) and background (red) benchmark
events. Shown are the distributions of transverse momenta (p1) of each
observed particle (a-e) as well as the imbalance of momentum in the
final state (f). Momentum angular information for each observed particle is
also available to the network, but is not shown, as the one-dimensional
projections have little information.
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Exotic Higgs searches

® Physicists use the well discriminating high-level variables — they are built out
of low-level variables and do not contain any additional information (7
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Figure 3 | High-level input features for Higgs benchmark. Distributions in
simulation of invariant mass calculations in £vjjbb events for simulated
signal (black) and background (red) events.
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Higgs searches

® Data: 2 600 000 events for training,
100 000 for validation

® Deep NN: 5 layers, 300 nodes in
each layer, fully connected

Table 1 | Performance for Higgs benchmark.

Technique Low-level High-level Complete
AUC
BDT 0.73 (0.01) 0.78 (0.0D 0.81 (0.01)
NN 0.733 (0.007) 0.777 (0.001) 0.816 (0.004)
DN 0.880 (0.001) 0.800 (<0.001) 0.885 (0.002)

Discovery significance
NN
DN

2.50
49qg

31
3.6

37c
5.0c

Comparison of the performance of several learning techniques: boosted decision trees (BDT),
shallow neural networks (NN), and deep neural networks (DN) for three sets of input features:
low-level features, high-level features and the complete set of features. Each neural netwaork was
trained five times with different random initializations. The table displays the mean area under
the curve (AUC) of the signal-rejection curve in Fig. 7, with s.d. in parentheses as well as the
expected significance of a discovery (in units of Gaussian ) for 100 signal events and

1,000 £ 50 background events.
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Summary of this exercise

® Deep NN found the features allowing to recognize the Higgs
boson better, than the skilled physicists with their whole
knowledge.

® This might allow in the future to automatize the physics
analysis....

® Does it mean unemployment for us?

® Problem: We must trust the Monte Carlo...

5.03.2019 M. Wolter, Machine learning



The Automated HEP Physicist? ‘ﬂ?

A few years from now our automaton could do on our behalf:

® Automatically determine the set of characteristics that distinguish particles
from the primary vertex from those from other vertices and automatically
classify particles based on this information.

® Automatically reduce particle event data into a smaller fixed set of numbers,
say N ~ 500 — which may be thought of as “pixelized images” — that can be
the basis of further analysis.

® Automatically classify these “images” into two sets: those that look like
simulated events and those that don't.

® Find more sets and classify the events according to MC classes.

Conclusions inspired by H.B.
Prosper “Deep Learning and

Bavesian Methods”
7.03.2019 . Kucharczyk, M.Wolter, Track finding with DNN




Deep learning for pattern recognition ‘ﬂ?
(a reminder)

Individual layers are trained to recognize the “features” - from simple to
more complex.

1

5 10 15 20 25 ..

oh weidl

Low weight

Sends a strong signal, when finding
a black square in the left upper corner.
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Deep Neural Network
works like that...

Deep Neural Metwork
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Convolutional NN
Pattern recognition

Example: 1000x1000 image
IM hidden units
‘ 1B parametersl!!

Many connections... How to simplify the deep neural
network?

5.03.2019 M. Wolter, Machine learning
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Convolutional NN

Example: 1000x1000 image

IM hidden units

Filter size: 10x10
10M parameters

Just connect only local areas, for example 10x10
pixels.

Huge reduction of the number of parameters!

A« arn multiple filters.  The same features might be found in different
LIRSS places => so we could train many filters, each
P \§v—-\ recognizing another feature, and move them
\ .
over the picture.

E.g.: 1000x1000 image
100 Filters
Filter size: 10x10

10K parameters

LeCun et al. “Gradient-based learning applied to document recognition” IEEE 1998
5.03.2019 M. Wolter, Machine learning
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Pooling

Pooling — (in most cases max
pooling) the group of outputs for a
larger input area is replaced by a
maximum (or average) for this given
area:

» Data reduction,

* Lower sensitivity for the position of a
given feature.

Single depth slice
1 o 2 3

/I

4 6 6 8
3 1 1 0 3
1 2 2 4

W
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Architecture of Alex Krizhevsky et al.

Softmax Output
e 8 layers total.

ot Oubut
e Trained on Imagenet Dataset
(1000 categories, 1.2M
Lo o P

3

training images, 150k test

Layer 5: Conv + Pool

images)
o 18.2% top-5 error Layer 4: Conv
o Winner of the ILSVRC-
2012 challenge. =

Layer 2: Conv + Pool

Layer 1: Conv + Pool

Slide: R.

Input Image
P g Fergus
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First layer filters

Showing 81 filters of
11x11x3.

Capture low-level
features like oriented
edges, blobs.

Note these oriented edges are
analogous to what SIFT uses to
compute the gradients.

SIFT - scale-invariant feature transform, algorithm
published in 1999 roku by David Lowe.

5.03.2019 M. Wolter, Machine learning
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Top 9 patches that activate each filter
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Few properties of Deep Neural Networks
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Figure 6.6: Empirical results showing that deeper networks generalize better when used
to transcribe multi-digit numbers from photographs of addresses. Data from Goodfellow
ot al. (2014d). The test set accuracy consistently increases with increasing depth. See
figure 6.7 for a control experiment demonstrating that other increases to the model size
do not yield the same effect.

http://www.deeplearningbook.org

5.03.2019 M. Wolter, Machine learning
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Figure 6.7: Deeper models tend to perform better. This is not merely because the model is
larger. This experiment from Goodfellow ¢f al. (2014d) shows that increasing the number
of parameters in layers of convolutional networks without increasing their depth is not
nearly as effective at increasing test set performance. The legend indicates the depth of
network used to make each curve and whether the curve represents variation in the size of
the convolutional or the fully connected layers. We observe that shallow models in this
context overfit at around 20 million parameters while deep ones can benefit from having
over 60 million. This suggests that using a deep model expresses a useful preference over
the space of functions the model can learn. Specifically, it expresses a belief that the
function should consist of many simpler functions composed together. This could result
either in learning a representation that is composed in turn of simpler representations (e.g.,
corners defined in terms of edges) or in learning a program with sequentially dependent
steps (e.g., first locate a set of objects, then segment them from each other, then recognize

them). http..//www.deeplearningbook.org
5.03.2019 M. Wolter, Machine learning
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Deep learning
Why deep learning

® Scales up for huge
amount of inputs

Deep learning

o
O
-
v
=
j -
O
‘€
@
o

Amount of data

How do data science techniques scale with amount of data?

5.03.2019 M. Wolter, Machine learning



Road Map
from Zihao Jiang presentation

Traditional Learning
Methods

Advanced ML Tools
CNN focus

Training on data (not MC!)

New Training Ideas

Punish for correlation

with some, poorly Learning without

modeled variables labels Gaussian Process

20171 2/4

Zihao Jiang
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Per pixel correlation between image
intensity and CNN output.

The four pixels at the core is highly

correlated with jet being a quark jet

CNN as an entirely different approach than
building likelihood from high level quantities show
improvement of quark vs. gluon classification
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CNNs

Event Classification:
Search for RPV SUSY gluino decays
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Learning from Data ﬂ?
--Classification w/o Labeling

® A step even further is
classification w/o Mixed Sample 1 Mixed Sample 2
labeling (CWolLa,
1708.02949)

https://arxiv.org/abs/170
8.02949

® A classifier is trained to
distinguish sample 1
from sample 2 which are \
mixture of signal and
background with
different fractions

® Such a classifier is Classifier
optimal for distinguishing
signal from background

5.03.2019 M. Wolter, Machine learning
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Tracking - the current status

® Tracking in High Energy Physics — finding the tracks of charged particles from
the hits they leave in detectors.

® Number of collisions per event increases — for upgraded CERN experiments
(High Luminosity LHC) we expect thousands of tracks.

e Current tracking algorithms have
been used very successfully in High
Energy Physics experiments

* Good efficiency and modeling with
acceptable CPU consumption

* Problem: they don’t scale so well to
expected high luminosity conditions

 Thousands of charged particles,
O(10°) 3D space-points, while the
standard algorithms scale worse
than quadratic

« Standard algorithms are intrinsically
sequential

7.03.2019 M. Kucharczyk, M. Wolter “Finding track parameters with DNN”



Pattern Recognition
in High Energy Physics

p
< @
Particle’ s parameters
m (a/p,lambda,phi,d0,dz)
X )d2) |
\ _D-_-i_j. \_ — I\
Seeding Track Building Track Fitting

® Track seeding — finding the seeds (initial sets of hits) from which the track
starts

® Track building = pattern recognition HEP jargon

— Creating a 2- and 3-dimensional lines and assigning to them all the hits
within a certain window

— Fitted frequently with “robust fit”

® Track fitting — final fitting of the track parameters (usually a Kalman filter
used for tracking)

7.03.2019 M. Kucharczyk, M.Wolter, Track finding with DNN



So, where is the problem? ﬂ?

® The time needed to process one event
grows quickly with luminosity (number of

§§ " CMS Simulation, Vs = 13 TeV, it + PU, BX=25ns i collisions).
€ go ™ Full Reco Current—=— Track Reco Current | _ ]
€ "1 - FulRecoRunt — TrackRecoRun1 | @ Huge partof CPU consumption is the
3 | 1 track finding.
2 5y PU140 _ g
— L i .
® Will be a bottle-neck for the future
40 B experiments.
30 - Deep Neural Networks (dnn)?
B 1 @ Fast, parallel, in principle do pattern
20 R recognition “at once”, without looping
i 1 over hits.
10— PU40 / ]
- PU25 - 1 @ Also experiments with lower occupancy
Lo e I [ TR N R [ o0 1 1 ’ 1 1ol
} 1 2 3 4 5 6 might profit from dnn’s — high precision

Luminosity [10* cm2 1] and efficiency.

® i .
CMS experiment simulation There is a HEPTrkx group working on

J.-R. Vlimant, Machine Learning for Charged tracking for HEP_ eXpe_”mentS:
Particle Tracking, MIT, 2018 https://heptrkx.github.io/

7.03.2019 M. Kucharczyk, M.Wolter, Track finding with DNN
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hadronic vacuum polarization

Our goal - application to MUonE

e Implement dnn to MUonE experiment at SPS, CERN.

e MUoNE dedicated to measure a hadronic correction to
the anomalous muon magnetic moment.

—In order to increase sensitivity to the potential New
Physics phenomena which may cause an observed
discrepancy with respect to the Standard Model predictions.

e Need very good precision and tracking efficiency!
e Apply DNN first to the experimental testbeam data taken in 2017 and 2018.

e DNN may provide fast and efficient pattern recognition.

— the most crucial step in the track reconstruction procedure.
High-energy resolution

ECAL

Module 1 Module 2

FHE

Target Target

7.03.2019 M. Kucharczyk, M.Wolter, Track finding with DNN



Our goal - application to MUonE

Pattern recognition - ’classical’ approach

e construct pairs from all the combinations of hits (CPU TIME
CONSUMING)

e clusterization of two adjacent hits (COMPLICATED ALGORITHMS)

— reduces number of clones
— Improves reconstruction of two close tracks

» for each hit pair construct a line and collect all the hits within a certain

window
— all combinations of hits for a lines are fitted (CPU TIME CONSUMING)

 potential problems with final precision and tracking efficiency

Projection XZ Projection YZ
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Using DNN - hope to improve all bottlenecks!
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Toy model of track finding using ﬂ?
Deep Neural Networks

® Characteristics of the toy MC:

— 2-dimensional data to reduce
the training time

— Straight line tracks (no magnetic
field) on the 28x28 pixel plane

— Finite hit efficiency and random
noise
® Reconstruction method: training
Convolution Deep Neural Network
to identify a track and return track
parameters (one of the propositions
of the HEPTrkx group)

oo @ LSTM (Long Short-Term Memory
units) to process a sequence of
tracks (not only a single one).

7.03.2019 M. Kucharczyk, M.Wolter, Track finding with DNN



Single track events ﬂ?

: : : i Resolution

10 m 10 m 10 m 70(-)/0 -h It 4000 ;— = RN T T W T Track slope resolution
20 i 20 kY 20 Lf o efflc‘ency’ 3500 E_ TraCk Slope 3 CNN 0=0.0053
[ i —Il-. ° L B '.:' .._ L] E

10 Y .-.l. 10 I-.' ’ - .

5% noise. S660E. — i 0=0.0040
Nice, clean e

events. o

1500F
1000

5000 _
0: -1 IR T R S T - PR S — 1 1
% 20.05 0 0.05

_D JlJl||||l]lIlI]IJlJlIIIIlJl

] [} 10 20 1
. After patter recognltlon by CNN the track is
fitted using the ROOT package robust fit T
(removing the outliers). | | P Impact point el bl e
* Results: track parameter resolution only slightly 3000 il G20/0044
worse for neural network than for the fit. 2500 =
» Efficiency: over 99% (reconstructed track: 2000 E
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reshape 1 _input: InputLayer

INPUT
What about many tracks?
l:onv2d_::Conv2D ‘ *
® Solution: add Long Short-Term Memory (LSTM)
Iaye r. conv2d_2: ConvZD
® | STM allows labeling images, so why not use it for mex poolng2d_1; MazPoolingZDl} ey
labeling tracks? =
Recurrent Neural Network ik ok G
conv2d_4: ConvZD
drcpout_; : Dropout
flatten_1: Flatten |
dense_1: Dense
1 rspeatﬁvector__‘l: RepeatVector
CNN extracts the features from our 5
input image. The LSTM network is - Istm_1: LSTM
trained as a language model on the = ‘
featu re Vector_ T iltime_distributecl_l(dense_Z):TimeDistributed(Dense)

0 UTP UT reshape 2: Reshape
Network architecture
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Long Short Term Memory (LSTM)

Adding the LSTM to the network is like adding a memory unit that can
remember context from the very beginning of the input. Useful for object
labeling on an image or Natural Language Processing (NLP).

hy.

Jinput J’
Xy —— tanh

® | STM is an artificial recurrent neural network . Unlike standard feedforward
neural networks, LSTM has feedback connections that make it a "general
purpose computer” (that is, it can compute anything that a Turing machine
can)!!!
It can not only process single data points (such as images), but also entire
sequences of data (such as speech or video).
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LSTM for language translation

https://github.com/keras-team/keras/blob/master/examples/Istm_seg2seq.py

Input sentence: Be nice.

Decoded sentence: Soyez gentille !
Input sentence: Beat it.

Decoded sentence: Degagez-les.
Input sentence: Call me.

Decoded sentence: Appellez-moi !
Input sentence: Call us.

Decoded sentence: Appelle-nous !
Input sentence: Come in.

Decoded sentence: Entre !

Input sentence: Drop it!

Decoded sentence: Laissez tomber !

Basic character-level sequence-to-
sequence model. We apply it to translating
short English sentences into short French
sentences, character-by-character.

Note that it is fairly unusual to do
character-level machine translation, as
word-level models are more common in
this domain.

input_1: InputLayer

L J
Istm 1: LSTM input 2: InputLayer

N S

Istm 2: LSTM

'

dense 1: Dense
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Tests with more tracks and higher noise

e 3 tracks
e 70% hit efficiency
* 5% random noise

Slightly worse resolution achieved by CNN than
the fit performed afterwards. Fit gives narrower
resolution in the central part, but the tails are

comparable to the CNN.
Efficiency: 87%
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Tests with more tracks and higher noise

3 tracks
* 70% hit efficiency
e 20% random noise

Tracks are hardly visible by eye, but still could be

recognized by the network.

The resolution and efficiency degrade.

Efficiency CNN: 66%

Graph
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Results

® Robust and effective track finding in the toy model data
® Quite insensitive for noise and hit inefficiency

® After quite long initial training the classification itself is quite fast.

CPU usage (Three tracks, 70% efficiency, 20% noise):

— Deep NN training: 457 a.u
— Pattern recognition using NN: 13 a.u itis very fast!
— Track fitting: 385 a.u

The pattern recognition is very fast! 40 times faster than fitting performed
afterwards.

Resolution obtained by Convolutional Neural Network is not much worse,
than the one from the robust fit.
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Future plans ‘ﬂ?

® \We plan to apply the Deep Neural Network techniques to the experimental
testbeam data taken in 2017 and 2018 by the MUonE experiment operating at
the SPS accelerator at CERN.

® Deep neural Network will be used for pattern recognition in MuonE, which
should improve it's precision and efficiency. It's crucial, since anomalous
magnetic muon should be measured with precision better than 0.5% to
produce a useful result.

® The approach might be not so straight forward, it might be a hybrid of neural
network and traditional methods (ideas from HEP.TrkX group)

— Track seeding
— Hit classification with LSTMs
— Hit classification (track extrapolation) with CNN

® Novel techniques, worth trying on real data (test beam).

® \We will need much more computer power for network training (Prometeus,
GPU?)

Calculations done on Zeus using LHCb grant no. IhcbflavO8
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Deep Neural Network for artists :)

DeepArt.io

“A Neural Algorithm of Artistic Style”, arXiv:1508.06576
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DeepArt.io
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The Automated HEP Physicist? ‘ﬂ?

® A few years from now our automaton could do on our behalf:

® Automatically determine the set of characteristics that distinguish particles
from the primary vertex from those from other vertices and automatically
classify particles based on this information.

® Automatically reduce particle event data into a smaller fixed set of numbers,
say N ~ 500 — which may be thought of as “pixelized images” — that can be
the basis of further analysis.

® Automatically classify these “images” into two sets: those that look like
simulated events and those that don't.

® Find more sets and classify the events according to MC classes.

Conclusions inspired by H.B.
Prosper “Deep Learning and

Bavyesian Methods”
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Deep Learning Software (few packages)

® Theano is a low-level library that specializes in efficient computation. You'll
only use this directly if you need fine-grain customization and flexibility.

® TensorFlow is another low-level library that is less mature than Theano.
However, it's supported by Google and offers out-of-the-box distributed
computing.

® Lasagne is a lightweight wrapper for Theano. Use this if need the flexibility of
Theano but don't want to always write neural network layers from scratch.

® Keras is a heavyweight wrapper for both Theano and Tensorflow. It's
minimalistic, modular, and awesome for rapid experimentation. This is our
favorite Python library for deep learning and the best place to start for
beginners.

® TMVAI/root is now interfaced to Keras (root 6.08)
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Exercises
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ATLAS Z - tau tau selection

® Data;

— mcl2/Ztautau.root - signal
— Powheg_ttbar.root - bckg

— Wenu.root - bckg

— Wmunu.root - bckg

— Wtaunu.root - bckg

— Zee.root - bckg

— Zmumu.root - bckg
® Variables:

preselection:
if(!(evtsel_is_dilepVeto > 0 && evtsel is_tau > 0 &&
fabs(evtsel_tau_eta) < 2.47 && evtsel_is_conf_lep_veto == 1 &&
evtsel_tau_numTrack == 1 && evtsel lep_pt > 26 &&
fabs(evtsel_lep_eta) < 2.4 && evtsel _transverseMass < 70))
continue;

if (I( evtsel _is_oppositeSign>0 && evtsel is_ mu>0 &&
evtsel_is_isoLep>0)) continue;
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ATLAS Z - tau tau selection

® Variables used for training:

— evtsel_tau_et

— evtsel _dPhiSum

— evtsel_tau_pi0_n

— evtsel_transverseMass
— sum_cos_dphi

® Spectator

— VIS _mass

® Program:

— TMVACIassificationMW.C | TMVACIassificationMW.h
Performs the basic training.
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ATLAS Z - tau tau selection ‘ﬂ?

® |nstall root & TMVA
® Get data and a sample program:

— http:/Inz14-46.4.if|.edu.pl/cwiczenieATLAS/
® Run a sample code in C++:
root -
.L TMVAClassificationMW.C++
TMVACIassificationMW t

t.Loop()
® Modify it:

— Try to optimize the parameters of the selected method

— Try to remove or add some variables.

— Try to use individual variables, for example the variables used to build
sum_cos_dphi

— Use all the types of background use the weights WeightLumi
® Zaaplikowac wyuczony klasyfikator do danych (datal2/Muons.PhysCont.grpl4.root),
mozna sie wzorowac na przyktadzie TMVACIassificationApplication dostepnym na
stronie TMVA oraz zatgczonym przyktadzie TMVACIassificationApplicationMW.C.
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ATLAS Z - tau tau selection

Make such a plot for visible mass (doesn’'t need to be so nice).
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Figure 41: Distributions of variables observed in £ — 77 (u-had channel). From top-left: visible mass of 7-lepton
system, T transverse momentum, sum of polar angles between T and missing- £y and between lepton and missing-£r,
transverse mass of the lepton-missing-Ey system, lepton transverse momentum and missing-Er.
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