TOP reconstruction software: status and plans

Marko Starič

Belle II Computing Workshop

M. Starič (IJS)

TOP reconstruction software

Krakow, June 16, 2010 1 / 14

Outline

- TOP counter principles
- Short about reconstruction
- TOPsimrec: existing stand-alone reconstruction code
- Plans

3

$\label{eq:time-of-propagation} Time-of-propagation \ (TOP) \ counter$

• example of ring images

5 10 15 20

f-TOP and i-TOP

• focusing TOP \longrightarrow chromatic error correction

• focusing TOP with expansion prism = imaging TOP

Extended Likelihood probability

For a given mass hypothesis $h = e, \mu, \pi, K, p$:

$$\log \mathcal{L}_h = \sum_{i=1}^N \log(\frac{S_h(x_i, t_i) + B(x_i, t_i)}{N_e}) + \log P_N(N_e)$$

- N ... number of detected photons
- $N_e = N_h + N_B \dots$ expected number of photons
- $S_h(x, t)$... signal distribution for mass hypothesis h
- B(x, t) ... distribution of background photons
- $P_N(N_e)$... Poisson probability of mean N_e to obtain N photons

Distributions normalized as:

$$\sum_{j=1}^{n_{ch}} \int_0^{t_m} S(x_j, t) dt = N_h, \qquad \sum_{j=1}^{n_{ch}} \int_0^{t_m} B(x_j, t) dt = N_B$$

Krakow, June 16, 2010

Parametrization of signal distribution

$$S_h(x_j,t) = \sum_{k=1}^{m_j} n_{kj}g(t-t_{kj};\sigma_{kj})$$

• n_{kj} ... number of photons in the k-th peak

- t_{kj} ... position of the k-th peak
- σ_{kj} ... width of the k-th peak
- $g(t t_{kj}; \sigma_{kj})$... normalized Gaussian

- 3

Signal distribution: analytical construction

NIM A 595 (2008) 252-255

- Find analytical expressions for n_{ki} , t_{ki} and σ_{ki}
- Input:
 - track impact position (x_0, z_0) and impact angles (θ, ϕ)
 - Cerenkov angle θ_c for given mass hypothesis
 - photon detection coordinate x_i
- Solve for unknown $\phi_c \Rightarrow$ photon direction vector fully determined
- Geometric view: intersection of Cerenkov cone with a plane
 - well known, guadratic equations
- Total reflections: act as folding the detector plane at bar boundaries
- Method now successfully extended to f-TOP and i-TOP
 - iterations needed to solve for ϕ_c
 - then t_{ki} , σ_{ki} , n_{ki} obtained by raytracing

What we need from tracking

Track parameters as close to TOP as possible:

- point (x, y, z)
- momentum \vec{p}
- track length ℓ

TOPsimrec

- Stand-alone code exists since last year
 - Based on F77 code
 - $\bullet \ C++ \ user \ interface \ provided \\$
- Can be downloaded from http://www-f9.ijs.si/ staric/TOP/
- Possible to use it for virtually any TOP configuration
- Includes also non-Geant simulation
- Already used for many design/performance studies
- CPU and memory consumption (tested on B computers):

configuration	CPU/track/hypothesis	max MEM
1-bar option	18 ms	15 MB
2-bar option	3.3 ms	10 MB

Comparison: simulated vs. analytic $S_h(x, t)$

M. Starič (IJS)

TOP reconstruction software

Krakow, June 16, 2010

f-TOP with cylindrical mirror

M. Starič (IJS)

TOP reconstruction software

Krakow, June 16, 2010

f-TOP with spherical mirror

M. Starič (IJS)

TOP reconstruction software

Krakow, June 16, 2010

Reconstruction of Geant3 simulation

- analytical PDF
- PDF constructed with MC simulation (5000000 photons)

- \bullet Reconstruction code is mainly in F77 \longrightarrow rewrite to C++
- Implement into Belle II software
- To be ready: end of this year
- Improvements in PDF \longrightarrow need full Geant 4 simulation

- 31

Image: A matrix