

Takanori Hara
Andreas Moll
Martin Heck
Guofu Cao

Ryosuke Itoh
Nobu Katayama

Belle II Computing Workshop
16/06/2010

The basf2 Framework
an introduction

Python steeringPython steering

Parallel processingParallel processing

GearboxGearbox

Geant4Geant4

DataStoreDataStore

ModulesModules

Outline 2

History of the Belle II framework

Geometry library

Steering of the framework

Modules

Simulation

Data store

Basic architecture

Summary

History of basf2
or how everything began

History: BELLE 4

Software framework of BELLE: basf (belle analysis framework)

Successfully used since over 10 years for

O
nl

in
e HLT (High level trigger)

DAQ (Data acquisition)
DQM (Data quality monitor)

BELLE detector optimization
Physics analysisO

ffl
in

e

Conclusion after 10 years:

Proven concepts: modules, paths, usage as online and offline software

Verified and well tested for BELLE

Many hard coded values: hard to adapt for Belle II

Lack of documentation

Software not state-of-the-art any more (steering, external software)

Combines a lot of knowledge (treasure box)

History: ROOBASF vs ILC 5

basf not suited for Belle II, for example:
Clustering: Number of ganged strips is hard coded
Tracking: Assumes exactly 4 layers
Simulation: Uses geant3
Analysis: old hbook files (e.g. only float values)

roobasf

@ KEK

Adds support for reading/writing ROOT files to basf
(including parallel processing support !)

A new software framework for Belle II has to be developed

ILC

@ MPI and Charles University

solves hbook problem

Adapted ILC software for PXD optimization
(Simulation of Belle II tracking detectors)

Two independent framework developments started:

geant4 simulation,
detailed description of PXD, SVD

Release of stand alone version

Until 2010/02/23 roobasf part of basf library

History: The Aufheben-Solution 6

On a legendary meeting during July 2009 B2GM (2009/07/07), Itoh-san proposed the
“Aufheben-Solution” (merging of roobasf with ILC):

Nice idea to combine both frameworks. But not the optimal solution for a new software.
Better: write a new software and take the best things from both frameworks.

History: basf2 7

Parallel development on roobasf and ILC continued... until 2010/04/05

Development of the new Belle II software framework started:

basf2

Reasons to start the development of a new framework:

● Event model not flexible enough (e.g. problems implementing CDC wires)
● Steering with XML not optimal
● No common geometry solution for simulation and reconstructionIL

C
ro

ob
as

f

● Code needed restructuring and documentation
● Still driven by the idea of the Aufheben-Solution

m
an

po
w

er

Andreas Moll, Martin Heck and Guofu Cao can work for 3 months
exclusively on the software framework under the guidance of
Nobu Katayama and Ryosuke Itoh.

This talk presents the result of the work done in the last 2.5 months

Basic architecture
designing the tools of tomorrow

The basf2 architecture 9

basf2 is divided into two subsystems: kbasf2 and pbasf2

kbasf2 processes a single stream of data by executing
smaller data processing blocks called modules.

pbasf2 runs multiple instances of kbasf2 in parallel and
handles the parallel reading and writing of event data.

Modules and paths 10

The data processing chain consists of a linear arrangement of modules.

Typical modules: data input, geometry input, simulation, tracking, data output...

Modules live in a path (container where the modules are arranged in a strict linear order.)

Processed data is stored in a common storage, the DataStore.

Framework executes modules one at a time, exactly in the order in which they were
placed into the path

Unlike roobasf and ILC, reading and writing of even data is done in modules

Conditions 11

basf2 allows the user to create an arbitrary number of paths.

Paths can then be connected with each other using conditions.

Each module can return an integer number or a boolean value.

Depending on these return values and a user defined condition, the process flow can
switch from one path to another.

C++ code: in the event() method (see later):

void EvtMetaGen::event()
{
 //...
 setReturnValue(10);
}

void EvtMetaGen::event()
{
 //...
 setReturnValue(false);
}

Boolean:

Integer:

Libraries and modules 12

The algorithms/functionality of the framework can be used by multiple modules
(e.g. tracking algorithms: in the tracking module, analysis module etc.)

In basf2 libraries and modules are separated:

Modules live in a “Module Pool”
Libraries in a “Library Pool”

Advantage:

Usually, a library encapsulates a specific set of functionality of the basf2 framework
(e.g. geometry handling, simulation code, tracking algorithms, etc.)

Modules
the LEGO® bricks of basf2

Modules 14

Modules are the building blocks of any event processing chain.

They are automatically loaded by the framework at runtime and put to a “Module Pool”.

The user can then select an arbitrary number of modules from the “Module Pool”
and add them to a path.

Standard modules are shipped with the framework
Additional modules (e.g. analysis modules) can be added by the user

A module is identified by its unique name.

Module structure 15

A module is a C++ class having a clearly defined structure:

class EvtMetaGen : public Module {
public:
 NEW_MODULE(EvtMetaGen)

 EvtMetaGen(bool selfReg = true);
 virtual ~EvtMetaGen();
 virtual void initialize();
 virtual void beginRun();
 virtual void event();
 virtual void endRun();
 virtual void terminate();
protected:
private:
};

Macro which returns a new instance of
the module

Initialize the module (set variables etc.)

Constructor (add param, set properties)

Called at the beginning of each run

“Worker” method

Called at the end of each run

Terminate the module
(unset variables, delete memory etc.)

Inherits from abstract base class

Module parameters 16

Parameters allow the user to steer a module (e.g. change its behaviour)

Add a member variable to the module class
which stores the value of the parameter.

Connect the member variable to a parameter name (in the constructor of the class)

Set the value of the parameter in the python steering file

Inside the module, the member variable holding the parameter value
can be used like any other variable.

private:
double m_dEdxCut;
std::string m_rootFilename;

EvtMetaGen::EvtMetaGen(bool selfRegisterType)
 : Module("EvtMetaGen", selfRegisterType)
{
 addParam(“dEdxCut”, m_dEdxCut, 0.4, “Only use tracks above this cut”)
 addParam(“rootOutput”, m_rootFilename, “debug.root”, “Root output”);
}

evtmetagen.param(“dEdxCut”, 0.75)
evtmetagen.param(“rootOutput”, “test075.root”)

Python C++ Description

Module parameters 17

Supported parameter types:

int int Integer number

float double Floating point number

str string Text

bool bool Boolean value

Python C++ Description
B

as
ic

 ty
pe

s

list (int) std::vector<int> List of integer numbers

list (float) std::vector<double> List of floating point num

list (str) std::vector<string> List of single line strings

list (bool) std::vector<bool> List of boolean values

Li
st

 ty
pe

s

Module properties 18

Check if running environment matches module chain

Prepare the framework for the use in DAQ, HLT, DQM

A module can flag its functionality:

Example usage scenarios:

● Run framework in single processing mode if there is at least one module in the
chain which requires single processing.

● In a parallel processing environment: Check if an input module with
multi processing capabilities is available.

Set the properties in the constructor or the initialize() method of the class

EvtMetaGen::EvtMetaGen(bool selfRegisterType)
 : Module("EvtMetaGen", selfRegisterType)
{
 setPropertyFlags(c_TriggersNewRun | c_TriggersEndOfData |
 c_RequiresSingleProcess);
}

Module properties 19

Available properties:

c_TriggersNewRun This module is able to trigger new runs.

c_TriggersEndOfData This module is able to send the message that
there is no more data available.

c_ReadsDataSingleProcess This module is able to read data from a single
data stream (disk/server).

c_ReadsDataMultiProcess This module is able to read data from an event
streaming server.

c_WritesDataSingleProcess This module is able to write data into a single
data stream (disk/server).

c_WritesDataMultiProcess This module is able to write data to an event
streaming server.

c_RequiresSingleProcess This module requires the framework to run
in single processing mode.

c_RequiresGUISupport This module requires the framework to have
GUI support enabled.

DataStore
storing data has never been easier

DataStore 21

Can store any class that inherits from TObject and has a ROOT dictionary.

Three different “durability types” are available:

Event

Contains the data stored for
one single event.

Content is automatically
deleted by the framework
after each event.

Run

Contains the data stored for
one run.

Content is automatically
deleted by the framework
after each run.

Persistent

Contains the data stored for
the duration of the event
processing.

Content is automatically
deleted by the framework
before event processing
starts.

No pre-defined event model (like ILC).

The data which should be stored is defined by each subdetector group.

The DataStore manages all data loaded or created during the processing of events

Access the DataStore 22

The content of the DataStore is accessed (read/write) by two accessor classes:

StoreObjPtr single objects
StoreArray object arrays

Templates are used to have typesafe objects

StoreObjPtr<HitCDC> cdcPointer1("TestHit1");
Example: get a single CDC hit carrying the name “testHit1”

If the CDC hit does not yet exist, it is created. Default durability type is c_Event.

Calling the methods of the (HitCDC) class is then easy. For example:

cdcPointer1->setWireId(243);

Same result: create an empty access pointer and assign an object to it

StoreObjPtr<HitCDC> cdcPointer2;
cdcPointer2.assignObject("TestHit1", c_Event, true);

Durability type

Generate new
object if it does
not exist.

Add your own data to the DataStore 23

In order to save your own class to the DataStore, your class should full fill the following
requirements:

The class has to inherit from TObject

class YourClass : public TObject {
...

Add ClassDef to the header file:

class YourClass : public TObject {
...
private:
...
 ClassDef(YourClass, 1);
};

Add ClassImp to the source file:

#include <yourclass/YourClass.h>
ClassImp(YourClass);

1

2

3

Add your own data to the DataStore 24

Create a linkdef.h file

#ifdef __CINT__
#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;
#pragma link C++ nestedclasses;

#pragma link C++ class YourClass;
#endif

The build system will create automatically a dictionary file.

4

Your class can then be written to and read from the DataStore.
The code which writes/reads the data of your class to disk is
automatically generated.

Geometry
shape your detector

Geometry 26

Detector geometry is ingredient for

● geant4 detector simulation
● digitization
● reconstruction (e.g. tracking)

basf2 concept: Store parameters describing the geometry centrally
Create geometry objects (volumes) on-demand

Parameter storage 27

The geometry parameters are stored in XML files

Advantages of XML documents

Human readable (e.g. content can be tracked by a version control system)

Industry-standard:

● a lot of tools are available
● sophisticated libraries for handling XML files exist
● OpenSource/Free/Commercial GUI applications

Developed and maintained by the World Wide Web Consortium (W3C)
(the main international standards organization for the World Wide Web)

 Detector model
 SVD

 CDC

 ECL
 PID
 ...

 PXD
One XML file per subdetector

One XML file describing a
specific detector model

C
on

te
nt

H
ea

de
r

XML file example – PXD 28

<Subdetector type="PXD">
<Name>PXD BelleII 1600pix</Name>
<Description>The famous RedBull can</Description>
<Version>0</Version>
<Creator>PXDBelleII</Creator>
<Content>

<Layers>
<Layer id="1">

<Phi0 desc="..." unit="deg">90.0</Phi0>
<Radius desc="..." unit="mm">13</Radius>
<OffsetY desc="..." unit="mm">-2.25</OffsetY>
<OffsetZ desc="..." unit="mm">11.7</OffsetZ>
<NumberOfLadders desc="...">8</NumberOfLadders>

<Ladder desc="...">
<Length desc="...">76.4</Length>
<Width desc="...">12.5</Width>
<Thickness desc="..." unit="um">50</Thickness>
<NumberOfSensors>2</NumberOfSensors>

<Sensor id="1">
<Gap desc="...">0</Gap>
<PadSizeRPhi desc="..." unit="um">50</PadSizeRPhi>

Specifies the C++ code which
creates the geometry (see next slide)

Geometry creation 29

Creators behave similar to modules in the framework:
● Identified by their unique name
● Inherit from a single base class
● Implement a defined interface

The C++ code which creates the geometry objects (volumes) is called Creator

The geometry objects (volumes) are ROOT TGeo objects, organized in a hierarchy.

Creators have only access to the content part of the XML document (see previous slide)

TGeo Geometry 30

The created geometry is then available to all modules in the module chain.
The geometry is created by the Gearbox module and stored in memory.

CDC

SVD

PXD

Beampipe

In basf2:

Current detector geometry

Simulation
gives your particle wings

Simulation 32

basf2 contains a geant4 based simulation library (+module)

Therefore, each subdetector has to provide

● a class which handles the sensitive detector
● a class which represents the simulation result (hit)
● a class which stores the result into the DataStore

The ROOT TGeo geometry is automatically converted to geant4 using g4root.

Already implemented subdetectors:

PXD Currently only the sensitive silicon parts are implemented
SVD Currently only the sensitive silicon parts are implemented
CDC Highly detailed implementation

Passive (dead) volumes are automatically converted.
Active (sensitive) volumes have to be defined by each subdetector.

Current implementation uses an uniform magnetic field.

great work done by
Guofu Cao!

Example CDC 33

CDC Sense Wires (Backward endplate):

Ten tracks in one event

π+, 0.3 GeV < p < 1.3 GeV

In the figure the geant4
pre-step positions are drawn

The simulation module 34

A simulation module (simModule) is available.

Since the sensitive detectors register themselves automatically to the simulation
library, the simulation module has access to them without having to change the
module.

Features of the simulation module:

Advantage of having separated the libraries from the modules

● set the different verbosity levels of geant4
● activate geant4 interactive mode
● supports geant4 visualization
● Reads geant4 macros

● Particle gun
● HEPEvt files

Steering
Command & Conquer basf2

Executing basf2 36

After having installed basf2, you can start it by typing:

basf2

Show the available command line options:

basf2 --help

Generic options:
 -h [--help] print all available options
 -v [--version] print version string
 -i [--info] print information about basf2
 -m [--modules] print a list of all available modules
Configuration:
 --steering arg the python steering file

Start basf2 with a steering file (e.g. steering.py):

basf2 steering.py

basf2 steering 37

from basf2 import *
#Create module
test = fw.register_module("Hello")

#Create path
main = fw.create_path()
#Add module to path
main.add_module(test)
#Start event processing
fw.process(main,100,1)

basf2 uses Python to steer the framework

Advantages: ● Python is a standard scripting language
● Well documented (extensive language reference, books, tutorials)
● Add calculations, print statements and even analysis code (PyROOT) to
your steering file.

Python steering file example:

Import basf2 environment

Register a module

Create a new path

Add the registered modules
to the path.

Start event processing with
path “main”
(100 events, run number 1)

More basf2 steering 38

Conditions (switching paths):

test.condition(path1)
If the boolean return value of test is false,
the event processing continues with the
first module in path1

test.condition(">5",path1) If the integer return value of the module
test is greater than 5, the event processing
continues with the first module in path1

Setting module parameters:

test.param("CutdEdx",1.4)
test.param("Filename","/home/belle2/testFile.root")

testDict = {'CutdEdx' : 1.4,
 'Filename' : "/home/belle2/testFile.root",
 'Resolutions' : [20.2, 23.4, 50.4, 55.7]
 'TrackDetectors' : ["PXD", "SVD", "CDC"]}
test.param(testDict)

Python dictionary:

Directly:

Summary 39

All basic functionality of a framework are already available in basf2

Tracking (GENFIT integration started)

Integration of other subdetectors than PXD, SVD, CDC

Vertex fitting (RAVE)

Condition database

Under development or still missing:

Geometry

Modules DataStore

Simulation

Basic architecture

Steering

Documentation online (Doxygen + TWiki)

Summary 40

This talk just scratched the surface. Framework features not presented in this talk:

DataStore

● EventMetaData handling
● DataStore arrays
● DataStore iterators
● DataStore special objects

Architecture

● Module / Creator / Sensitive detector self
registration mechanism

● Internal event processing mechanism
● Internal usage of shared pointer /

templates / STL / boost
● Error handling
● Logging
● Build system

Modules

● Process-record return values

Geometry

● Geometry parameter access
● Standard units
● Creator development
● Materials

Simulation

● Simulation architecture
● Sensitive detector development
● Particle gun / HepEvt support
● Simulation module parameters

Steering

● Access to framework information
● Access to the DataStore
● Error statistics
● Process statistics

Want to try it ? 41

basf2 manual (introduction + installation + reference)

http://b2comp.kek.jp/~twiki/bin/view/Computing/Basf2manual

Doxygen documentation

http://www-ekp.physik.uni-karlsruhe.de/~heck/doxygen/

http://b2comp.kek.jp/~twiki/bin/view/Computing/Basf2manual
http://www-ekp.physik.uni-karlsruhe.de/~heck/doxygen/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41

