CRED ©
 THE QUEST FOR THE UNEXPECTED

Algorithm for data analysis of smantphone application

Presenters 10 Almeida Cheminant

CREDO Week 2018 $1^{s t}-5^{\text {th }}$ October 2018

The science behind the CREDO app

\rightarrow indirect search for New Physics manifestations!
\rightarrow verification of „classic" QED predictions (preshower @ Sun)

The science behind the CREDO app

Image examples:

CREDO App: Smartphone application to turn cameras into particle detectors
\rightarrow available on Androïd

$\underline{\sim}$	V	$\sim \sim$ last 5 registered users	
- Login	- Detections	- Login	\rightarrow D
kilo	86,167	filipfcb42	1
Mafia75 7	56,188	Grzegorz	0
mates	33,949	kris	0
Bogdan51	31,588	Hibiskus	226
Krzysztof	22,295	prawdziwytomasz	0

L Last 20 detections

The science behind the CREDO app

Image examples:

Informations obtained about the data:

Timestamps and GPS location

Data acquisition and pre-processing

- detection

- If $\Delta t_{1}+\Delta t_{2}+\ldots+\Delta t_{n}=24 \mathrm{~h} \rightarrow$ timestamps are saved in a file.

Data acquisition and pre-processing

- detection

- For each user, we obtained a file containing the timestamps for 24 h periods:
timestamps_<userID>_1.txt, timestamp_<userID>_2.txt, timestamp_<userID>_3.txt, etc...

Data acquisition and pre-processing

1 |1529324517747
21529325363714
31529326915006
41529326915039
51529327416692
61529327430452
71529327430452
81529327799978
91529328562431
101529328592824
111529328624409
121529328729567
131529328739873
141529328784549
151529329109491
161529329940873
171529330466254
181529330595181
191529331273051
201529331883964
211529333849364
221529334153055
231529334217083
241529334217083
251529334799244
261529335003646
271529335139004
281529335139004
291529335561395
301529335561395
311529335765857

What are we looking for?

Possible Observation of a Burst of Cosmic-Ray Events in the Form of Extensive Air Showers
Gary R. Smith, M. Ogmen, E. Buller, and S. Standil
Physics Department, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
(Received 7 April 1983)
A series or burst of 32 extensive air showers of estimated mean energy $3 \times 10^{15} \mathrm{eV}$ was observed within a $5-\mathrm{min}$ time interval beginning at 9:55 A.M. (CST) on 20 January 1981 in Winnipeg, Canada. This observation was the only one of its kind during an experiment which recorded 150000 such showers in a period of 18 months between October 1980 and April 1982.

What are we looking for?

Possible Observation of a Burst of Cosmic-Ray Events in the Form of Extensive Air Showers
Gary R. Smith, M. Ogmen, E. Buller, and S. Standil
Physics Department, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada (Received 7 April 1983)

A series or burst of 32 extensive air showers of estimated mean energy $3 \times 10^{15} \mathrm{eV}$ was observed within a 5-min time interval beginning at 9:55 A.M. (CST) on 20 January 1981 in Winnipeg, Canada. This observation was the only one of its kind during an experiment which recorded 150000 such showers in a period of 18 months between October 1980 and April 1982.

PACS numbers: $94.40 . \mathrm{Pa}, 94.40 . \mathrm{Rc}, 95.30 .-\mathrm{k}$

First analysis:

Looking for how many times two consecutive detections happen within 5 minutes time windows in the data and compare to background expectations!

What does the algorithm look like?

1) Extract data from timestamp file.

What does the algorithm look like?

1) Extract data from timestamp file.
2) Simulate MULTIPLE background maps based on a uniform distribution of detections and the number of detections in the data.

- detection

DATA

$$
\Delta t_{B}=\Delta t_{1}+\Delta t_{2}=24 H
$$

What does the algorithm look like?

1) Extract data from timestamp file.
2) Simulate multiple background maps based on a uniform distribution of detections and the number of detections in the data.
3) Count how many times two consecutive detections happen within 5 minutes time windows in each background map to obtain distribution and 3 -sigma $/ 5$-sigma values:

What does the algorithm look like?

1) Extract data from timestamp file.
2) Simulate MULTIPLE background maps based on a uniform distribution of detections and the number of detections in the data.
3) Count how many times two consecutive detections happen within 5 minutes time windows in each background map to obtain distribution and 3 -sigma/ 5 -sigma values.
4) Count how many times two consecutive detections happen within 5 minutes time windows in data to compare do background distribution and obtain sigma/p-value.

What does the algorithm look like?

1) Extract data from timestamp file.
2) Simulate multiple background maps based on a uniform distribution of detections and the number of detections in the data.
3) Count how many times two consecutive detections happen within 5 minutes time windows in each background map to obtain distribution and 3 -sigma/ 5 -sigma values.
4) Count how many times two consecutive detections happen within 5 minutes time windows in data to compare do background distribution and obtain sigma/p-value.
5) Save expected (background) and observed (data) values, 3 and 5 sigma bands, and significance of observed in output file.

What does the algorithm look like?

1) Extracting data from timestamp file.
2) Simulate multiple background maps based on a uniform distribution of detections and the number of detections in the data.
3) REPEAT PROCESS FOR
wi EACH TIMESTAMP FILE
4) Count how many times two consecutive detections happen within 5 minutes time windows in data to compare do background distribution and obtain sigma/p-value.
5) Save expected (background) and observed (data) values, 3 and 5 sigma bands, and significance of observed in output file.

What do the results look like?

- Each point correspond to one timestamp file <=> one 24 h period
\# of doublets in 5 min. time windows - User piotr

\# of standard deviations - sigma

How to run the algorithm?

- 3 FILES:
- Analysis.cpp: algorithm written in c++ performing the previously mentioned analysis.
\rightarrow OUTPUT: txt file with values used for plots.
- Plot4user.C: ROOT macro plotting the results obtained from the analysis.
\rightarrow OUTPUT: plots.
- Run.sh: bash script compiling analysis.cpp file and looping over all timestamp files.

README file contains extra informations!

PRACTICE!

Practice

Practice

```
Processing data from user data - period 1...
Number of events in data: }25
Number of events in data after removing events with same timestamps: 227
Time covered by data = 140301.176 sec
Real ontime = 86400 sec
----- Doublet analysis -----
Expected number of doublets = 123.37118 || Number of doublets in data = 118 || pvalue = -0.694091016 || sigma = -1.023843958
3 sigma at 139.1094572 || 5 sigma at 149.601642
Elasped time is 2.00 seconds.
```

```
Processing data from user data - period 2...
Number of events in data: 278
Number of events in data after removing events with same timestamps: 238
Time covered by data = 88047.369 sec
Real ontime = 86400 sec
----- Doublet analysis -----
Expected number of doublets = 133.42482 || Number of doublets in data = 126 || pvalue = -0.8432097339 || sigma = -1.415949584
3 sigma at 149.1559309 || 5 sigma at 159.6433382
Elasped time is 1.00 seconds.
```

```
Processing data from user data - period 3...
Number of events in data: 273
Number of events in data after removing events with same timestamps: 250
Time covered by data = 99952.467 sec
Real ontime = 86400 sec
----- Doublet analysis -----
Expected number of doublets = 144.64178 || Number of doublets in data = 129 || pvalue = -0.9970569934 || sigma = -2.973629014
3 sigma at 160.4222757 || 5 sigma at 170.9426062
Elasped time is 2.00 seconds.
```

Processing data from user data - period 4...
Number of events in data: 216
Number of events in data after removing events with same timestamps: 196
Time covered by data $=74366.055 \mathrm{sec}$
Real ontime $=86400 \mathrm{sec}$
----- Doublet analysis -----
Expected number of doublets $=96.39774| |$ Number of doublets in data $=101| |$ pvalue $=0.635533989$ || sigma $=0.9068880314$
3 sigma at 111.6220891 || 5 sigma at 121.7716552
Elasped time is 2.00 seconds.

Practice

| $1 \mid 123.371180$ | 118.000000 | -1.023844 | 139.109457 | 149.601642 | -5.371180 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2133.424820 | 126.000000 | -1.415950 | 149.155931 | 159.643338 | -7.424820 |
| 3144.641780 | 129.000000 | -2.973629 | 160.422276 | 170.942606 | -15.641780 |
| 496.397740 | 101.000000 | 0.906888 | 111.622089 | 121.771655 | 4.602260 |

Each line corresponds to the analysis of one 24h period (one timestamp file)

\# of doublets in 5 min. time windows - User piotr

Significance of \# of doublets in data

Real data vs. simulated data

