

## Algorithm for data analysis of CREDO smartphone application

Presenter: K. Almeida Cheminant







**CREDO Week 2018** <u>1<sup>st</sup> – 5<sup>th</sup> October 2018</u>

#### The science behind the CREDO app



→ indirect search for New Physics manifestations!

→ verification of "classic" QED predictions (preshower @ Sun)

### The science behind the CREDO app



**Image examples:** 





CREDO App: Smartphone application to turn cameras into particle detectors → available on Androïd

| 🛃 top 5 users | ~          | 🛃 last 5 registered users | ~          |
|---------------|------------|---------------------------|------------|
| \$ Login      | Detections | \$ Login                  | Detections |
| kilo          | 86,167     | filipfcb42                | 1          |
| Mafia75 7     | 56,188     | Grzegorz                  | 0          |
| mates         | 33,949     | kris                      | 0          |
| Bogdan51      | 31,588     | Hibiskus                  | 226        |
| Krzysztof     | 22,295     | prawdziwytomasz           | 0          |
|               |            |                           |            |

#### 🛃 Last 20 detections

| so              | rt: date yby: descending y Envoyer |               |              |
|-----------------|------------------------------------|---------------|--------------|
| ¢ date          | \$ login                           | <b>≑</b> team | <b>≑</b> img |
| NEW @1 Hour ago | Piotr J. Piotrowski                | no team       | -            |
| ⊙1 Hour ago     | Piotr J. Piotrowski                | no team       | ľ            |
| ⊙1 Hour ago     | Piotr J. Piotrowski                | no team       | •            |
| ⊙ 4 hours ago   | Piotr J. Piotrowski                | no team       |              |

### The science behind the CREDO app



**Image examples:** 



# Informations obtained about the data:

#### **<u>Timestamps</u>** and <u>GPS location</u>

#### Data acquisition and pre-processing

detection



• If  $\Delta t_1 + \Delta t_2 + ... + \Delta t_n = 24h \rightarrow \text{timestamps are saved}$ in a file.

#### Data acquisition and pre-processing





For each user, we obtained a file containing the timestamps for 24h periods:

timestamps\_<userID>\_1.txt, timestamp\_<userID>\_2.txt, timestamp\_<userID>\_3.txt, etc...

#### Data acquisition and pre-processing



#### What are we looking for?

VOLUME 50, NUMBER 26

#### PHYSICAL REVIEW LETTERS

27 JUNE 1983

#### Possible Observation of a Burst of Cosmic-Ray Events in the Form of Extensive Air Showers

Gary R. Smith, M. Ogmen, E. Buller, and S. Standil

Physics Department, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

(Received 7 April 1983)

A series or burst of 32 extensive air showers of estimated mean energy  $3 \times 10^{15}$  eV was observed within a 5-min time interval beginning at 9:55 A.M. (CST) on 20 January 1981 in Winnipeg, Canada. This observation was the only one of its kind during an experiment which recorded 150 000 such showers in a period of 18 months between October 1980 and April 1982.

PACS numbers: 94.40.Pa, 94.40.Rc, 95.30.-k



### What are we looking for?

VOLUME 50, NUMBER 26

#### PHYSICAL REVIEW LETTERS

27 June 1983

#### Possible Observation of a Burst of Cosmic-Ray Events in the Form of Extensive Air Showers

Gary R. Smith, M. Ogmen, E. Buller, and S. Standil Physics Department, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

(Received 7 April 1983)

A series or burst of 32 extensive air showers of estimated mean energy  $3 \times 10^{15}$  eV was observed within a 5-min time interval beginning at 9:55 A.M. (CST) on 20 January 1981 in Winnipeg, Canada. This observation was the only one of its kind during an experiment which recorded 150 000 such showers in a period of 18 months between October 1980 and April 1982.

PACS numbers: 94.40.Pa, 94.40.Rc, 95.30.-k

#### First analysis:

Looking for how many times two consecutive detections happen within 5 minutes time windows in the data and compare to background expectations!

1) Extract data from *timestamp* file.

2) Simulate MULTIPLE background maps based on a uniform distribution of detections and the number of detections in the data.



- 2) Simulate multiple background maps based on a uniform distribution of detections and the number of detections in the data.
- 3) Count how many times two consecutive detections happen within 5 minutes time windows in each background map to obtain distribution and 3-sigma/5-sigma values:



- 2) Simulate MULTIPLE background maps based on a uniform distribution of detections and the number of detections in the data.
- 3) Count how many times two consecutive detections happen within 5 minutes time windows in each background map to obtain distribution and 3-sigma/5-sigma values.
- 4) Count how many times two consecutive detections happen within 5 minutes time windows in data to compare do background distribution and obtain sigma/p-value.

- 2) Simulate multiple background maps based on a uniform distribution of detections and the number of detections in the data.
- 3) Count how many times two consecutive detections happen within 5 minutes time windows in each background map to obtain distribution and 3-sigma/5-sigma values.
- 4) Count how many times two consecutive detections happen within 5 minutes time windows in data to compare do background distribution and obtain sigma/p-value.
- 5) Save expected (background) and observed (data) values, 3 and 5 sigma bands, and significance of observed in output file.

1) Extracting data from *timestamp* file.

 Simulate multiple background maps based on a uniform distribution of detections and the number of detections in the data.



4) Count how many times two consecutive detections happen within 5 minutes time windows in data to compare do background distribution and obtain sigma/p-value.

5) Save expected (background) and observed (data) values, 3 and 5 sigma bands, and significance of observed in output file.

#### What do the results look like?

• Each point correspond to one timestamp file <=> one 24h period



### How to run the algorithm?

#### • 3 FILES:

- *Analysis.cpp*: algorithm written in c++ performing the previously mentioned analysis.
  - $\rightarrow$  <u>OUTPUT</u>: txt file with values used for plots.
- *Plot4user.C*: ROOT macro plotting the results obtained from the analysis.
  - $\rightarrow$  <u>OUTPUT</u>: plots.
- *Run.sh*: bash script compiling *analysis.cpp* file and looping over all timestamp files.

README file contains extra informations!

# PRACTICE!

#### Practice



timestamp\_1510\_ 49.txt nestamp\_15 50.txt

.CXC

#### Practice

```
Processing data from user data - period 1...
Number of events in data: 252
Number of events in data after removing events with same timestamps: 227
Time covered by data = 140301.176 sec
Real ontime = 86400 sec
----- Doublet analysis -----
Expected number of doublets = 123.37118 || Number of doublets in data = 118 || pvalue = -0.694091016 || sigma = -1.023843958
3 sigma at 139.1094572 || 5 sigma at 149.601642
Elasped time is 2.00 seconds.
Processing data from user data - period 2...
Number of events in data: 278
Number of events in data after removing events with same timestamps: 238
Time covered by data = 88047.369 sec
Real ontime = 86400 sec
----- Doublet analysis -----
Expected number of doublets = 133.42482 || Number of doublets in data = 126 || pvalue = -0.8432097339 || sigma = -1.415949584
3 sigma at 149.1559309 || 5 sigma at 159.6433382
Elasped time is 1.00 seconds.
Processing data from user data - period 3...
Number of events in data: 273
Number of events in data after removing events with same timestamps: 250
Time covered by data = 99952.467 sec
Real ontime = 86400 sec
----- Doublet analysis -----
Expected number of doublets = 144.64178 || Number of doublets in data = 129 || pvalue = -0.9970569934 || sigma = -2.973629014
3 sigma at 160.4222757 || 5 sigma at 170.9426062
Elasped time is 2.00 seconds.
Processing data from user data - period 4...
Number of events in data: 216
Number of events in data after removing events with same timestamps: 196
Time covered by data = 74366.055 sec
Real ontime = 86400 sec
----- Doublet analysis -----
Expected number of doublets = 96.39774 || Number of doublets in data = 101 || pvalue = 0.635533989 || sigma = 0.9068880314
3 sigma at 111.6220891 || 5 sigma at 121.7716552
Elasped time is 2.00 seconds.
```

#### Practice

| <b>1</b> 123.371180 | 118.000000 | -1.023844 | 139.109457 | 149.601642 | -5.371180  |
|---------------------|------------|-----------|------------|------------|------------|
| 2 133.424820        | 126.000000 | -1.415950 | 149.155931 | 159.643338 | -7.424820  |
| 3 144.641780        | 129.000000 | -2.973629 | 160.422276 | 170.942606 | -15.641780 |
| 4 96.397740         | 101.000000 | 0.906888  | 111.622089 | 121.771655 | 4.602260   |

Each line corresponds to the analysis of one 24h period (one timestamp file)



# of doublets in 5 min. time windows - User piotr Expected value 3-sigma limi 200 Observed value 5-sigma limit 180 160 140 120 100 80 60 40 20 50 Days Significance of # of doublets in data \* 0 # of doublets in 5 min. time windows - User alpha Expected value 3-sigma limit Number of doublets 200 Observed value 5-sigma limit 180 160 140 120 100 80 60 40 20 Significance of # of doublets in data # of standard deviations - sigma 2 1.5 0.5 0 -0.5

-1.5 -2

#### **Real data vs. simulated data**

50 Days

50 Days