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Plasma Constraints on the Cosmological Abundance of Magnetic Monopoles and the

Origin of Cosmic Magnetic Fields

Mikhail V. Medvedev⇤ and Abraham Loeb
Department of Astronomy, Harvard University, Cambridge, MA 02138

Existing theoretical and observational constraints on the abundance of magnetic monopoles are
limited. Here we demonstrate that an ensemble of monopoles forms a plasma whose properties are
well determined and whose collective e↵ects place new tight constraints on the cosmological abun-
dance of monopoles. In particular, the existence of micro-Gauss magnetic fields in galaxy clusters
and radio relics implies that the scales of these structures are below the Debye screening length,
thus setting an upper limit on the cosmological density parameter of monopoles, ⌦M . 3 ⇥ 10�4,
which precludes them from being the dark matter. Future detection of Gpc-scale coherent magnetic
fields could improve this limit by a few orders of magnitude. In addition, we predict the existence
of magnetic Langmuir waves and turbulence which may appear on the sky as “zebra patterns” of
an alternating magnetic field with k ·B 6= 0. We also show that magnetic monopole Langmuir
turbulence excited near the accretion shock of galaxy clusters may be an e�cient mechanism for
generating the observed intracluster magnetic fields.

I. INTRODUCTION

Magnetic monopoles are hypothetical particles that
carry a net magnetic charge. They have been proposed
by Dirac [1] in order to explain the quantization of an
electric charge, which is a fundamental experimental fact
which, at the time, had no other explanation. Dirac
showed that the electric, e, and magnetic, g, charges must
be related by

eg = n~c/2, (1)

where n is an integer. Thus, the magnetic charge is also
quantized, g = ngD, and

gD =
~c
2e

=
1

2↵
e ⇡ 137

2
e (2)

is called the ‘Dirac charge’, where ↵ is the fine structure
constant.

Magnetic monopoles are theoretically very attractive
because their existence in the Universe would restore the
full symmetry of Maxwell’s equations:
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with the Lorentz force being

dp↵
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⌘
v
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c
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where F
↵� and F̃

↵� = (1/2)✏↵���F�� are the electro-
magnetic and dual electromagnetic tensors, Je = (⇢e, je)
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and Jm = (⇢m, jm) are the electric and magnetic four-
currents, qe and qm are electric and magnetic charges, v
and p are four-velocity and four-momentum of particles.
This system of equations admits symmetry under the

duality transformation:
✓
Je

Jm

◆
=

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
J
0
e

J 0
m

◆
, (6)

✓
E

B

◆
=

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
E0

B0

◆
, (7)

for an arbitrary rotation angle ✓. Thus, one cannot
uniquely assign an electric charge or a magnetic charge
(or a mix thereof) to a particle, as they merely become
a matter of convention. For example, the roles of the
electric and magnetic charges swap upon a rotations of
✓ = ⇡/2.
Furthermore, ’t Hooft [2] and Polyakov [3] discovered

the necessity of magnetic monopoles in Grand Unification
Theories (GUT) which unify strong and electroweak in-
teractions. Electric charge in these theories is naturally
quantized and the magnetic monopole thus appear al-
most unavoidably as a topological defect in spontaneous
symmetry breaking below the GUT energy scale, with
a mass mM ⇠ 1017 GeV. Larger monopole masses are
expected if gravity is involved in a GUT scheme and
smaller masses are predicted in theories involving some
intermediate scale between the GUT and electroweak en-
ergy scales. Magnetic monopoles of the lowest mass (if
there are more than one type) must be a stable particle
because magnetic charge is conserved. For more details
on the theory and observational predictions of magnetic
monopoles, see e.g., reviews by Preskill [4] and Patrizii
& Spurio [5].
Magnetic monopoles are believed to be produced dur-

ing a phase transition at the GUT energy scale via the
Kibble mechanism [6]. Above the critical GUT temper-
ature, Tc ⇠ 1015 GeV the symmetry is restored and no
monopoles are present. The monopoles appear as topo-
logical defects of a scalar field at T < Tc. Their abun-
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dance is thus set by the correlation length of the scalar
field at T ⇠ Tc. Causality limits this length to the hori-
zon scale at that epoch. For an adiabatically expanding
Universe, the relic monopole abundance at the present
epoch is estimated to be [7, 8]:

⌦Mh
2 ' 1015

�
Tc/10

15 GeV
�3

m17, (8)

where m17 = mM/(1017 GeV), mM ⇠ Tc/↵ is the
monopole mass, h = H/(100 km s�1 Mpc�1) is the nor-
malized Hubble constant and ⌦M = ⇢̄M/⇢c is the density
parameter, i.e., the ratio of the average monopole density
in the Universe to the critical density ⇢c = 3H/8⇡G '
10�5 GeV cm�3, with G being Newton’s gravitational
constant. This implies the number density of monopoles
would be comparable to that of baryons, thus over-closing
the Universe due to their much higher mass, which is im-
possible. The most attractive solution to this ‘monopole
problem’ is inflation, which can dilute the primordial
monopole density by a factor of ⇠ e

N ⇠ 1026, where
N ⇠ 60 is the minimal number of inflation e-folds.

Despite extensive searches, magnetic monopoles have
never been observed with confidence. The searches in-
clude collider experiments, such as MODAL, TRISTAN,
PETRA, CDF, D0, HERA, and cosmic ray observatories,
such as MACRO, Baikal, Baksan-2, Soudan-2, Ohya,
KGF, AMANDA, ANTARES, IceCube; see the review
[5] and comprehensive bibliographies [9, 10] for details.
Experimental upper limits on the flux of monopoles at
Earth are, approximately,

FM .
⇢

10�16 cm�2 s�1 sr�1 for v/c . 0.8,
3⇥ 10�18 cm�2 s�1 sr�1 for v/c & 0.8.

(9)

The non-relativistic upper limit is mostly set by the dedi-
cated search with MACRO experiment at Gran Sasso [11]
and the relativistic upper limit is set by IceCube cosmic
ray detector in Antarctica [12].

These upper limits are consistent with a theoret-
ical constraint known as the ‘Parker limit’, FM <

10�16 cm�2 s�1 sr�1, based on the survival of Galac-
tic magnetic fields [13]. Indeed, the work done by
the magnetic fields in accelerating monopoles must
be replenished by the Galactic dynamo action, thus
jm ·B ⇠ (B2

/8⇡)⌧dynamo, where jm = gDnMv is the
monopole current, nM is the monopole number density
and ⌧dynamo ⇠ 108 yrs is the typical galactic dynamo
timescale. An improved ‘extended Parker limit’ [14] fol-
lows from the survival of protogalactic seed fields, yield-
ing

FM < 10�16
m17 cm�2 s�1 sr�1

. (10)

II. MONOPOLE PLASMA

At the current epoch, the Universe is filled with a fully
ionized gas – plasma. Because of long-range electromag-
netic interactions between electrons, protons, and other

ions, plasmas support collective instabilities and waves,
which are plasma normal modes, such as Alfven and
Langmuir waves. Thus, charged particle motions drasti-
cally di↵er from single-particle dynamics in electromag-
netic fields. If magnetic monopoles exist and their abun-
dance is large enough, then the symmetry of Maxwell’s
equations, Eqs. (3)–(5), dictates that the monopole dy-
namics should exhibit collective motions as well. In this
section, we discuss the properties of such a ‘magnetic
monopole plasma’ and the conditions for such a plasma
description to be valid.

First, we assume that the Universe ismagnetically neu-
tral, that is the amounts of positive and negative mag-
netic charges are equal so that the net magnetic charge
vanishes. This is a convenient ‘symmetry assumption’,
though it may be violated and if so, there will be some
net (but very weak) magnetic field. Second, it is also
likely that the masses of the positive and negative mag-
netic monopoles are equal, so for simplicity, we assume
that as well. Third, we take into account the presence of
the ionized gas (i.e., normal plasma) in the Universe. Its
dynamics is much faster and, hence, decoupled from that
of the monopole plasma since the monopoles are many
orders of magnitude more massive than the electrons and
ions, whereas their charge is larger by only two orders of
magnitude. The role of the ionized gas is crucial, though,
because it screens out electric fields and establishes quasi-
neutrality: no large-scale electric fields are present1.

In summary, we assure that the monopole plasma is:
(i) ‘magnetically neutral’ (no net charge), (ii) made of
particles with the same |g|/mM -ratio, and (iii) has van-
ishing electric fields. By the duality, given by Eqs. (6),
(7), this system is very similar to the simplest plasma
known: the collisionless unmagnetized electron-position
plasma whose properties are very well studied. For in-
stance, it supports propagation of electromagnetic waves
and of longitudinal Langmuir (electrostatic) waves which
can be Landau damped. This analogy allows us to pro-
ceed with quantitative calculations.

The monopoles should have some nonzero “thermal”
(random) velocity, vth, because they are accelerated by
magnetic fields in the same way electric charges are ac-
celerated by electric fields. The kinetic energy gained
is (� � 1)mMc

2 = gBl, where l is the path length and
� is the Lorentz factor. The largest systems with mag-
netic field observed so far are galaxy clusters. The typ-
ical intracluster medium magnetic fields have an ampli-
tude of a few micro-Gauss with coherence lengths of tens
of kiloparsecs, within the Mpc-cluster scale [15–19]. A
monopole moving throughNc ⇠ L/l independent patches
of coherent B-field attains the Lorentz factor, �, such

1
We neglect motional electric fields in astrophysical setups where

E ⇠ (v/c)B ⌧ B.
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Figure 1
(a) The GUT monopole structure. The various regions correspond to the following: Grand Unification
(r ∼ 10−29 cm). Inside this core, virtual X bosons should be present. The electroweak unification region
(r ∼ 10−16 cm) contains virtual W ± and Z0 bosons. The confinement region (r ∼ 10−13 cm) contains
virtual photons, gluons, a fermion–antifermion condensate, and four-fermion bags. For radii larger than a
few femtometers, one has the field of a point magnetic charge B = g/r2. (b) The monopole catalysis of
proton decay through the reaction p + M → M + e+ + π0. (c) The effect of the presence of a four-fermion
condensate, uude+, that can induce proton decay.

Figure 1 shows the structure of a GUTM. It has very small core, an EW region, a confinement
region, and a fermion–antifermion condensate (which may contain four-fermion agglomerates that
induce baryon number–violating processes). For r ≥ 3 fm, a GUT M behaves as a point particle
generating a field B = g/r2.

IMMs produced after the decoupling of the strong and EW interactions would have a structure
similar to that of a GUT M. The core radius would be larger (because R ∼ 1/M ), and the outer
cloud would not contain terms that allow baryon number violation.

2.1.2. Dyons. A dyon is a particle carrying both electric and magnetic charges. Therefore, when at
rest, it produces both electrostatic and magnetostatic fields. For two dyons, one with charges e1 and
g1 and the other with e2 and g2, the Dirac quantization condition becomes e1g2 − e2g1 = (!c /2)n.
Semiclassical arguments have been used to suggest that in a proper quantum-mechanical treatment
the dyon charge must be quantized. In the GUT framework, quantum fluctuations lead to a
quantized electric charge of the dyon in integer multiples of the minimal electric charge (18).

A M and a proton may form a bound system with both magnetic and electric charges (19). As
far as the energy loss in matter is concerned, a positively charged dyon and an (M + p)-bound
system behave in the same way.

2.1.3. Magnetic monopole catalysis of nucleon decay. As early as 1980, researchers hy-
pothesized that, given its inner structure, a GUT M could catalyze baryon number–violating
processes such as p + M → M + e+ + mesons. The cross section of this process (σ0) would be
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Monopoles restore EM symmetry
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and Jm = (⇢m, jm) are the electric and magnetic four-
currents, qe and qm are electric and magnetic charges, v
and p are four-velocity and four-momentum of particles.
This system of equations admits symmetry under the
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for an arbitrary rotation angle ✓. Thus, one cannot
uniquely assign an electric charge or a magnetic charge
(or a mix thereof) to a particle, as they merely become
a matter of convention. For example, the roles of the
electric and magnetic charges swap upon a rotations of
✓ = ⇡/2.
Furthermore, ’t Hooft [2] and Polyakov [3] discovered

the necessity of magnetic monopoles in Grand Unification
Theories (GUT) which unify strong and electroweak in-
teractions. Electric charge in these theories is naturally
quantized and the magnetic monopole thus appear al-
most unavoidably as a topological defect in spontaneous
symmetry breaking below the GUT energy scale, with
a mass mM ⇠ 1017 GeV. Larger monopole masses are
expected if gravity is involved in a GUT scheme and
smaller masses are predicted in theories involving some
intermediate scale between the GUT and electroweak en-
ergy scales. Magnetic monopoles of the lowest mass (if
there are more than one type) must be a stable particle
because magnetic charge is conserved. For more details
on the theory and observational predictions of magnetic
monopoles, see e.g., reviews by Preskill [4] and Patrizii
& Spurio [5].
Magnetic monopoles are believed to be produced dur-

ing a phase transition at the GUT energy scale via the
Kibble mechanism [6]. Above the critical GUT temper-
ature, Tc ⇠ 1015 GeV the symmetry is restored and no
monopoles are present. The monopoles appear as topo-
logical defects of a scalar field at T < Tc. Their abun-
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The 90%-CL upper limits versus velocity β for a flux of cosmic GUT Ms with magnetic charge g = gD.
The Parker bound refers to Equation 8, whereas the extended Parker bound (EPB) refers to Equation 9.

water (73). Additional light is produced by Cherenkov radiation from δ-ray electrons along the
monopole’s path for velocities down to β = 0.625.

In most cases, a large background from cosmic muons inhibits searches for downgoing candi-
dates. Upgoing monopoles are required to traverse the Earth before reaching the detector. Note
that it is unlikely that GUT supermassive Ms could reach (nearly) relativistic velocities. In the
IceCube analysis (71), the threshold was adjusted for downgoing signals according to the direction.

5.2.3. Ultrarelativistic magnetic monopoles. Constraints on the flux of ultrarelativistic Ms
have also been provided by two experiments aimed at detecting radio-wave pulses from the in-
teractions of a primary particle in ice. The Radio Ice Cherenkov Experiment (RICE), consisting
of radio antennas buried in the Antarctic ice, set a flux upper limit at 10−18 cm−2 s−1 sr−1 (95%
CL) for IMMs with a Lorentz factor 107 < γ < 1012 and a total energy of 1016 GeV (74). The
ANITA-II balloon-borne radio interferometer determined a 90%-CL flux upper limit on the
order of 10−19 cm −2 s−1 sr−1 for a Lorentz factor γ > 1010 at a total energy of 1016 GeV (75).

5.2.4. Induction techniques. Induction detectors are considered the most robust way to identify
the passage of a M of any velocity, mass, and magnetic charge. In searches for Ms in cosmic rays,
several loops in coincidence are needed to avoid spurious signals. The major drawbacks are the
cost of the superconductive loops with the required sensitivity, their small effective area (up to
1 m2), and the fact that such devices cannot be easily operated in any environment. Several
searches using apparata with different numbers of loops (e.g., References 76 and 77) set a
combined flux upper limit of ∼ 4 × 10−13 cm−2 sr−1 s−1 (out of the scale of Figure 7). They
provide the only direct constraints on the monopole flux for β < 10−4.

5.3. The MACRO Experiment at Gran Sasso
MACRO (78) was a large underground detector located in Hall B of Gran Sasso. At Gran Sasso,
the minimum thickness of the rock overburden is 3,150 hg cm−2 and the cosmic muon flux
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dance is thus set by the correlation length of the scalar
field at T ⇠ Tc. Causality limits this length to the hori-
zon scale at that epoch. For an adiabatically expanding
Universe, the relic monopole abundance at the present
epoch is estimated to be [7, 8]:

⌦Mh
2 ' 1015

�
Tc/10

15 GeV
�3

m17, (8)

where m17 = mM/(1017 GeV), mM ⇠ Tc/↵ is the
monopole mass, h = H/(100 km s�1 Mpc�1) is the nor-
malized Hubble constant and ⌦M = ⇢̄M/⇢c is the density
parameter, i.e., the ratio of the average monopole density
in the Universe to the critical density ⇢c = 3H/8⇡G '
10�5 GeV cm�3, with G being Newton’s gravitational
constant. This implies the number density of monopoles
would be comparable to that of baryons, thus over-closing
the Universe due to their much higher mass, which is im-
possible. The most attractive solution to this ‘monopole
problem’ is inflation, which can dilute the primordial
monopole density by a factor of ⇠ e

N ⇠ 1026, where
N ⇠ 60 is the minimal number of inflation e-folds.

Despite extensive searches, magnetic monopoles have
never been observed with confidence. The searches in-
clude collider experiments, such as MODAL, TRISTAN,
PETRA, CDF, D0, HERA, and cosmic ray observatories,
such as MACRO, Baikal, Baksan-2, Soudan-2, Ohya,
KGF, AMANDA, ANTARES, IceCube; see the review
[5] and comprehensive bibliographies [9, 10] for details.
Experimental upper limits on the flux of monopoles at
Earth are, approximately,

FM .
⇢

10�16 cm�2 s�1 sr�1 for v/c . 0.8,
3⇥ 10�18 cm�2 s�1 sr�1 for v/c & 0.8.

(9)

The non-relativistic upper limit is mostly set by the dedi-
cated search with MACRO experiment at Gran Sasso [11]
and the relativistic upper limit is set by IceCube cosmic
ray detector in Antarctica [12].

These upper limits are consistent with a theoret-
ical constraint known as the ‘Parker limit’, FM <

10�16 cm�2 s�1 sr�1, based on the survival of Galac-
tic magnetic fields [13]. Indeed, the work done by
the magnetic fields in accelerating monopoles must
be replenished by the Galactic dynamo action, thus
jm ·B ⇠ (B2

/8⇡)⌧dynamo, where jm = gDnMv is the
monopole current, nM is the monopole number density
and ⌧dynamo ⇠ 108 yrs is the typical galactic dynamo
timescale. An improved ‘extended Parker limit’ [14] fol-
lows from the survival of protogalactic seed fields, yield-
ing

FM < 10�16
m17 cm�2 s�1 sr�1

. (10)

II. MONOPOLE PLASMA

At the current epoch, the Universe is filled with a fully
ionized gas – plasma. Because of long-range electromag-
netic interactions between electrons, protons, and other

ions, plasmas support collective instabilities and waves,
which are plasma normal modes, such as Alfven and
Langmuir waves. Thus, charged particle motions drasti-
cally di↵er from single-particle dynamics in electromag-
netic fields. If magnetic monopoles exist and their abun-
dance is large enough, then the symmetry of Maxwell’s
equations, Eqs. (3)–(5), dictates that the monopole dy-
namics should exhibit collective motions as well. In this
section, we discuss the properties of such a ‘magnetic
monopole plasma’ and the conditions for such a plasma
description to be valid.

First, we assume that the Universe ismagnetically neu-
tral, that is the amounts of positive and negative mag-
netic charges are equal so that the net magnetic charge
vanishes. This is a convenient ‘symmetry assumption’,
though it may be violated and if so, there will be some
net (but very weak) magnetic field. Second, it is also
likely that the masses of the positive and negative mag-
netic monopoles are equal, so for simplicity, we assume
that as well. Third, we take into account the presence of
the ionized gas (i.e., normal plasma) in the Universe. Its
dynamics is much faster and, hence, decoupled from that
of the monopole plasma since the monopoles are many
orders of magnitude more massive than the electrons and
ions, whereas their charge is larger by only two orders of
magnitude. The role of the ionized gas is crucial, though,
because it screens out electric fields and establishes quasi-
neutrality: no large-scale electric fields are present1.

In summary, we assure that the monopole plasma is:
(i) ‘magnetically neutral’ (no net charge), (ii) made of
particles with the same |g|/mM -ratio, and (iii) has van-
ishing electric fields. By the duality, given by Eqs. (6),
(7), this system is very similar to the simplest plasma
known: the collisionless unmagnetized electron-position
plasma whose properties are very well studied. For in-
stance, it supports propagation of electromagnetic waves
and of longitudinal Langmuir (electrostatic) waves which
can be Landau damped. This analogy allows us to pro-
ceed with quantitative calculations.

The monopoles should have some nonzero “thermal”
(random) velocity, vth, because they are accelerated by
magnetic fields in the same way electric charges are ac-
celerated by electric fields. The kinetic energy gained
is (� � 1)mMc

2 = gBl, where l is the path length and
� is the Lorentz factor. The largest systems with mag-
netic field observed so far are galaxy clusters. The typ-
ical intracluster medium magnetic fields have an ampli-
tude of a few micro-Gauss with coherence lengths of tens
of kiloparsecs, within the Mpc-cluster scale [15–19]. A
monopole moving throughNc ⇠ L/l independent patches
of coherent B-field attains the Lorentz factor, �, such

1
We neglect motional electric fields in astrophysical setups where

E ⇠ (v/c)B ⌧ B.

Observational constraints on monopole flux
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where n is an integer, B�6 = B/(10�6 Gauss) is the typi-
cal intracluster field strength, l�2 = l/(10�2 Mpc) is the
field coherence length, L0 = L/(1 Mpc) is the size of
the magnetized region. Henceforth, we assume the Dirac
charge g = gD, so that n = 1, for simplicity. The general
case can easily be restored.

This yields the characteristic thermal velocity to be

vth/c '
⇢

1, if mM . 1013 GeV,

10�2
m

�1/2
17 , if mM & 1013 GeV.

(12)

This estimate is about an order of magnitude larger than

the previously derived, (vth/c) ⇠ 10�3
m

�1/2
17 , based on

the Galactic magnetic fields, yet it is rather conserva-
tive. Indeed, the largest magnetic structures known are
radio relics [19, 20]. They extend over the distances
L ⇠ 2 Mpc, have magnetic fields of strength B�6 ⇠ 3
with the coherence length l ⇠ L, based on the lack of
substantial variation of polarization of the radio emis-
sion. These values yield almost an order of magnitude
larger velocity. Since radio relics are rare, however, we
do not expect them to contribute much to the energiza-
tion of the entire cosmic monopole plasma, hence the
estimate (12) is adopted hereafter.

The total number density of monopoles is estimated to
be

nM = n+ + n� =
⌦M⇢c�

�mM

' (10�22cm�3)⌦Mh
2
m

�1
17 �,

(13)
where n+ and n� are the local densities of positive and
negative monopoles and � = ⇢M/⇢̄M is the overden-
sity. Hereafter, our numerical estimates assume non-
relativistic monopoles, � ' 1, unless stated otherwise.
This density corresponds to the mean distance between
the particles of a thousand kilometers or more.

Unless the monopoles are very massive, they are dis-
tributed nearly uniformly, hence � ' 1. However,
the current random velocities of particles with mM &
1017 GeV are comparable to or below the escape veloc-
ities from large galaxy clusters, vesc ⇠ 1000 km s�1.
Thus, such monopoles can be gravitationally trapped
with their density being greatly enhanced. For instance,
assuming that the monopole density follows the dark
matter density for vth ⌧ vesc as described by the NFW
profile [21], the density at the scale radius, rs (where
the velocity dispersion is approximately maximal) is
⇢s ⇠ ⇢vir(rvir/rs)3 ⇠ ⇢virc

3
⇤, where rvir and ⇢vir are

the virial radius and the density at the virial radius
and c⇤ = rvir/rs is the concentration parameter of the
NFW profile. In turn, the dark matter overdensity at the
virial radius is typically ⇠ 50. For a typical galaxy clus-
ter, c⇤ ⇠ 6, it yields the monopole overdensity of order

63 ⇥ 50 ⇠ 104. Thus,

� ⇠
⇢

1, if vth � 1000 km s�1
,

104, if vth ⌧ 1000 km s�1
.

(14)

Collective plasma excitations have a characteristic fre-
quency – the plasma frequency – which in the case of a
monopole plasma becomes:
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Such excitations can be called, by analogy with normal
plasmas, the magnetic Langmuir waves. They have the
dispersion relation

!
2 = !

2
p,M

+ 3k2v2
th
, (16)

where k is the wave number, v2
th

= kBT/mM , T is the
temperature and kB is the Boltzmann constant. These
waves are caused by charge separation and inertia, and
are longitudinal, k||B̃, because the perturbed field is no
longer divergence-free: r · B̃ = 4⇡gD(n+ � n�).
The magnetic Langmuir wave, by analogy with the nor-

mal one, should experience collisionless (Landau) damp-
ing, which is particularly strong when the wave phase ve-
locity is comparable to the thermal velocity, vph = !/k '
vth. The Landau damping rate, defined as the imaginary
part of a complex frequency, is given by:
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2k2nM

df0(v)

dv

����
v=!/k
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where f0(v) is the unperturbed distribution function of
monopoles and

R
f0 dv = nM . Note that the wave fields

are / exp(ik · x� i!t+�t). Hence damping occurs when
df0/dv is negative, as it is for the Maxwellian distribution
function, for example.
An electromagnetic wave is another normal mode in

such a plasma, with a very similar dispersion relation,
!
2 = !

2
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+ k
2
c
2. The characteristic spatial scale asso-

ciated with this eigenmode is the skin length:

d = c/!p,M ' (1025cm) (⌦Mh
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m17. (18)

Since !p,M is extremely small, the electromagnetic wave
propagation is not significantly a↵ected. A low-frequency
acoustic mode, with the dispersion relation !

2 = v
2
s
k
2,

can also exist in the monopole plasma, where v2
s
= �̂v

2
th

is
the sound speed and the e↵ective adiabatic index �̂ & 1.
Since vs ⇠ vth, this mode is e�ciently damped by Landau
damping, as described by Eq. (17).
The Debye length in normal plasmas characterizes

screening of electric fields. Similarly, the magnetic De-
bye length determines the scale above which the plasma
is magnetically quasi-neutral,
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vth
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' (1023cm) (⌦Mh
2�)�1/2

m
1/2
17 . (19)

2

dance is thus set by the correlation length of the scalar
field at T ⇠ Tc. Causality limits this length to the hori-
zon scale at that epoch. For an adiabatically expanding
Universe, the relic monopole abundance at the present
epoch is estimated to be [7, 8]:

⌦Mh
2 ' 1015

�
Tc/10

15 GeV
�3

m17, (8)

where m17 = mM/(1017 GeV), mM ⇠ Tc/↵ is the
monopole mass, h = H/(100 km s�1 Mpc�1) is the nor-
malized Hubble constant and ⌦M = ⇢̄M/⇢c is the density
parameter, i.e., the ratio of the average monopole density
in the Universe to the critical density ⇢c = 3H/8⇡G '
10�5 GeV cm�3, with G being Newton’s gravitational
constant. This implies the number density of monopoles
would be comparable to that of baryons, thus over-closing
the Universe due to their much higher mass, which is im-
possible. The most attractive solution to this ‘monopole
problem’ is inflation, which can dilute the primordial
monopole density by a factor of ⇠ e

N ⇠ 1026, where
N ⇠ 60 is the minimal number of inflation e-folds.

Despite extensive searches, magnetic monopoles have
never been observed with confidence. The searches in-
clude collider experiments, such as MODAL, TRISTAN,
PETRA, CDF, D0, HERA, and cosmic ray observatories,
such as MACRO, Baikal, Baksan-2, Soudan-2, Ohya,
KGF, AMANDA, ANTARES, IceCube; see the review
[5] and comprehensive bibliographies [9, 10] for details.
Experimental upper limits on the flux of monopoles at
Earth are, approximately,

FM .
⇢

10�16 cm�2 s�1 sr�1 for v/c . 0.8,
3⇥ 10�18 cm�2 s�1 sr�1 for v/c & 0.8.

(9)

The non-relativistic upper limit is mostly set by the dedi-
cated search with MACRO experiment at Gran Sasso [11]
and the relativistic upper limit is set by IceCube cosmic
ray detector in Antarctica [12].

These upper limits are consistent with a theoret-
ical constraint known as the ‘Parker limit’, FM <

10�16 cm�2 s�1 sr�1, based on the survival of Galac-
tic magnetic fields [13]. Indeed, the work done by
the magnetic fields in accelerating monopoles must
be replenished by the Galactic dynamo action, thus
jm ·B ⇠ (B2

/8⇡)⌧dynamo, where jm = gDnMv is the
monopole current, nM is the monopole number density
and ⌧dynamo ⇠ 108 yrs is the typical galactic dynamo
timescale. An improved ‘extended Parker limit’ [14] fol-
lows from the survival of protogalactic seed fields, yield-
ing

FM < 10�16
m17 cm�2 s�1 sr�1

. (10)

II. MONOPOLE PLASMA

At the current epoch, the Universe is filled with a fully
ionized gas – plasma. Because of long-range electromag-
netic interactions between electrons, protons, and other

ions, plasmas support collective instabilities and waves,
which are plasma normal modes, such as Alfven and
Langmuir waves. Thus, charged particle motions drasti-
cally di↵er from single-particle dynamics in electromag-
netic fields. If magnetic monopoles exist and their abun-
dance is large enough, then the symmetry of Maxwell’s
equations, Eqs. (3)–(5), dictates that the monopole dy-
namics should exhibit collective motions as well. In this
section, we discuss the properties of such a ‘magnetic
monopole plasma’ and the conditions for such a plasma
description to be valid.

First, we assume that the Universe ismagnetically neu-
tral, that is the amounts of positive and negative mag-
netic charges are equal so that the net magnetic charge
vanishes. This is a convenient ‘symmetry assumption’,
though it may be violated and if so, there will be some
net (but very weak) magnetic field. Second, it is also
likely that the masses of the positive and negative mag-
netic monopoles are equal, so for simplicity, we assume
that as well. Third, we take into account the presence of
the ionized gas (i.e., normal plasma) in the Universe. Its
dynamics is much faster and, hence, decoupled from that
of the monopole plasma since the monopoles are many
orders of magnitude more massive than the electrons and
ions, whereas their charge is larger by only two orders of
magnitude. The role of the ionized gas is crucial, though,
because it screens out electric fields and establishes quasi-
neutrality: no large-scale electric fields are present1.

In summary, we assure that the monopole plasma is:
(i) ‘magnetically neutral’ (no net charge), (ii) made of
particles with the same |g|/mM -ratio, and (iii) has van-
ishing electric fields. By the duality, given by Eqs. (6),
(7), this system is very similar to the simplest plasma
known: the collisionless unmagnetized electron-position
plasma whose properties are very well studied. For in-
stance, it supports propagation of electromagnetic waves
and of longitudinal Langmuir (electrostatic) waves which
can be Landau damped. This analogy allows us to pro-
ceed with quantitative calculations.

The monopoles should have some nonzero “thermal”
(random) velocity, vth, because they are accelerated by
magnetic fields in the same way electric charges are ac-
celerated by electric fields. The kinetic energy gained
is (� � 1)mMc

2 = gBl, where l is the path length and
� is the Lorentz factor. The largest systems with mag-
netic field observed so far are galaxy clusters. The typ-
ical intracluster medium magnetic fields have an ampli-
tude of a few micro-Gauss with coherence lengths of tens
of kiloparsecs, within the Mpc-cluster scale [15–19]. A
monopole moving throughNc ⇠ L/l independent patches
of coherent B-field attains the Lorentz factor, �, such

1
We neglect motional electric fields in astrophysical setups where

E ⇠ (v/c)B ⌧ B.

image: Kierdorf et al., A&A, 2017
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where n is an integer, B�6 = B/(10�6 Gauss) is the typi-
cal intracluster field strength, l�2 = l/(10�2 Mpc) is the
field coherence length, L0 = L/(1 Mpc) is the size of
the magnetized region. Henceforth, we assume the Dirac
charge g = gD, so that n = 1, for simplicity. The general
case can easily be restored.

This yields the characteristic thermal velocity to be
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1, if mM . 1013 GeV,
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17 , if mM & 1013 GeV.

(12)

This estimate is about an order of magnitude larger than

the previously derived, (vth/c) ⇠ 10�3
m

�1/2
17 , based on

the Galactic magnetic fields, yet it is rather conserva-
tive. Indeed, the largest magnetic structures known are
radio relics [19, 20]. They extend over the distances
L ⇠ 2 Mpc, have magnetic fields of strength B�6 ⇠ 3
with the coherence length l ⇠ L, based on the lack of
substantial variation of polarization of the radio emis-
sion. These values yield almost an order of magnitude
larger velocity. Since radio relics are rare, however, we
do not expect them to contribute much to the energiza-
tion of the entire cosmic monopole plasma, hence the
estimate (12) is adopted hereafter.

The total number density of monopoles is estimated to
be

nM = n+ + n� =
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2
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where n+ and n� are the local densities of positive and
negative monopoles and � = ⇢M/⇢̄M is the overden-
sity. Hereafter, our numerical estimates assume non-
relativistic monopoles, � ' 1, unless stated otherwise.
This density corresponds to the mean distance between
the particles of a thousand kilometers or more.

Unless the monopoles are very massive, they are dis-
tributed nearly uniformly, hence � ' 1. However,
the current random velocities of particles with mM &
1017 GeV are comparable to or below the escape veloc-
ities from large galaxy clusters, vesc ⇠ 1000 km s�1.
Thus, such monopoles can be gravitationally trapped
with their density being greatly enhanced. For instance,
assuming that the monopole density follows the dark
matter density for vth ⌧ vesc as described by the NFW
profile [21], the density at the scale radius, rs (where
the velocity dispersion is approximately maximal) is
⇢s ⇠ ⇢vir(rvir/rs)3 ⇠ ⇢virc

3
⇤, where rvir and ⇢vir are

the virial radius and the density at the virial radius
and c⇤ = rvir/rs is the concentration parameter of the
NFW profile. In turn, the dark matter overdensity at the
virial radius is typically ⇠ 50. For a typical galaxy clus-
ter, c⇤ ⇠ 6, it yields the monopole overdensity of order

63 ⇥ 50 ⇠ 104. Thus,
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1, if vth � 1000 km s�1
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104, if vth ⌧ 1000 km s�1
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Collective plasma excitations have a characteristic fre-
quency – the plasma frequency – which in the case of a
monopole plasma becomes:
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Such excitations can be called, by analogy with normal
plasmas, the magnetic Langmuir waves. They have the
dispersion relation

!
2 = !

2
p,M

+ 3k2v2
th
, (16)

where k is the wave number, v2
th

= kBT/mM , T is the
temperature and kB is the Boltzmann constant. These
waves are caused by charge separation and inertia, and
are longitudinal, k||B̃, because the perturbed field is no
longer divergence-free: r · B̃ = 4⇡gD(n+ � n�).
The magnetic Langmuir wave, by analogy with the nor-

mal one, should experience collisionless (Landau) damp-
ing, which is particularly strong when the wave phase ve-
locity is comparable to the thermal velocity, vph = !/k '
vth. The Landau damping rate, defined as the imaginary
part of a complex frequency, is given by:
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where f0(v) is the unperturbed distribution function of
monopoles and

R
f0 dv = nM . Note that the wave fields

are / exp(ik · x� i!t+�t). Hence damping occurs when
df0/dv is negative, as it is for the Maxwellian distribution
function, for example.
An electromagnetic wave is another normal mode in

such a plasma, with a very similar dispersion relation,
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2 = !

2
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+ k
2
c
2. The characteristic spatial scale asso-

ciated with this eigenmode is the skin length:
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2�)�1/2
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Since !p,M is extremely small, the electromagnetic wave
propagation is not significantly a↵ected. A low-frequency
acoustic mode, with the dispersion relation !

2 = v
2
s
k
2,

can also exist in the monopole plasma, where v2
s
= �̂v

2
th

is
the sound speed and the e↵ective adiabatic index �̂ & 1.
Since vs ⇠ vth, this mode is e�ciently damped by Landau
damping, as described by Eq. (17).
The Debye length in normal plasmas characterizes

screening of electric fields. Similarly, the magnetic De-
bye length determines the scale above which the plasma
is magnetically quasi-neutral,
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Debye length 

No shielding on L~Mpc:

4

At large distances from the source, r > �D, the field
is exponentially suppressed, / e

�r/�D . The time-scale
on which quasineutrality is established is fast: ⌧qn ⇠
�D/vth ⇠ !p,M .

So far, we have assumed that the monopole distribu-
tion is dense enough to be treated as a plasma. For this
to hold true, the plasma parameter – the total number of
particles within a Debye sphere – must be much greater
than unity. Indeed,

ND =
4⇡

3
�
3
D
nM ' 6⇥ 1047 (⌦Mh

2�)�1/2
m

1/2
17 . (20)

Thus, unless the abundance ⌦M ⌧ 10�90 or so, the
plasma condition is safely satisfied: ND � 1. In fact,
the monopole plasma, if it exists, is the best plasma in
the Universe.

Finally, the characteristic time between particle colli-
sions is ⌧ = 1/⌫, where the collision frequency is

⌫ =
4⇡g4

D
nM ln⇤

m
2
M
v
3
th

' (10�63 s)⌦Mh
2�m

�3/2
17 ln⇤, (21)

where ln⇤ = ln(�D/r0) ⇠ 120 is the magnetic Coulomb
logarithm and r0 ⇠ gD/mMv

2
th

is the distance of the
closest approach. Thus, the plasma is highly collisionless
with the collision time being ⌧ ⇠ 1043tH , where tH ⇠
4⇥ 1017 s is the Hubble time.

III. ABUNDANCE CONSTRAINTS

The existence of astrophysically strong, micro-Gauss
magnetic fields on Mpc scales places a tight constraint on
the monopole abundance. The monopole plasma should
screen out magnetic fields on scales greater than the
magnetic Debye length to make it quasi-neutral. The
largest scale fields are observed in clusters and radio relics
[19, 20], whose scale is L ' 2 Mpc, thus,

�D > L. (22)

This sets the upper limit on the monopole abundance:

⌦Mh
2
< 10�3��1

m17. (23)

Note that this limit rules out entirely the possibility that
monopoles (of sub-Planckian mass) make the dark mat-
ter, even for � = 1, i.e., without taking gravitational
trapping into account.

Furthermore, the overdensity � depends on vth which
is a function of mM , see Eqns. (12), (14). A detailed ex-
ploration how gravitational trapping of monopoles occurs
in dark matter halos goes beyond the scope of this paper.
Instead, we adopt here a simple function that smoothly
interpolates between the two limiting cases in Eq. (14)
as follows:

� = 1 + 104 tanh4
⇥
(3⇥ 107 cm s�1)/vth

⇤
. (24)

FIG. 1. Monopole mass-abundance diagram. The blue
shaded region labeled ‘clusters Debye’ is excluded based on
the plasma constraint, i.e., that the magnetic Debye scale
must exceed the galaxy cluster scale. The extended Parker
exclusion region is shown as a shaded green area. The black
region at the top is excluded because the monopole mass den-
sity exceeds that of matter. The grey shaded area on the right
is the super-Planckian mass region. Monopoles are relativis-
tic to the left of the vertical dotted line. The observational
upper limits are shown as a disjoint red curve with the down
arrow. The purple dashed and solid brown curves show con-
ditions when the plasma skin depth and the Debye scale are
comparable to the horizon scale of the present day Universe,
respectively.

It yields � ⇠ 104 for vth . 300 km s�1, � ⇠ 102 at
vth ⇠ 1000 km s�1 and � ⇠ 1 for vth & 3000 km s�1.

Figure 1 shows the abundance constraint represented
by Eq. (22): the blue shaded region is the exclusion re-
gion. Since this constraint follows from the fact that the
Debye length exceeds the galaxy cluster scale, it is la-
beled as “clusters Debye”. Note that this region is com-
puted using exact Eqs. (19), (15), (13), (11) and the
interpolating function (24) for �. The exclusion region
from the extended Parker limit, Eq. (10), is also shown
as the green shaded area. The black horizontal region
at the top is excluded because ⌦M exceeds that of the
matter, which is impossible. The grey band on the right
corresponds to monopole masses exceeding the Planck
mass mPlanck = (~c/G)1/2 ' 1.22⇥ 1019 GeV. The ver-
tical dotted line marks where, vth ⇠ c, i.e., the magnetic
monopoles are relativistic to the left of this line. The
observational upper limits in Eq. (9) are shown as a red
broken curve with the downward arrow.

Figure 1 implies that the Debye limit strengthens the
abundance constraint by several orders of magnitude in
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At large distances from the source, r > �D, the field
is exponentially suppressed, / e
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So far, we have assumed that the monopole distribu-
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Thus, unless the abundance ⌦M ⌧ 10�90 or so, the
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4⇥ 1017 s is the Hubble time.
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the monopole abundance. The monopole plasma should
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ter, even for � = 1, i.e., without taking gravitational
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Furthermore, the overdensity � depends on vth which
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ploration how gravitational trapping of monopoles occurs
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FIG. 1. Monopole mass-abundance diagram. The blue
shaded region labeled ‘clusters Debye’ is excluded based on
the plasma constraint, i.e., that the magnetic Debye scale
must exceed the galaxy cluster scale. The extended Parker
exclusion region is shown as a shaded green area. The black
region at the top is excluded because the monopole mass den-
sity exceeds that of matter. The grey shaded area on the right
is the super-Planckian mass region. Monopoles are relativis-
tic to the left of the vertical dotted line. The observational
upper limits are shown as a disjoint red curve with the down
arrow. The purple dashed and solid brown curves show con-
ditions when the plasma skin depth and the Debye scale are
comparable to the horizon scale of the present day Universe,
respectively.

It yields � ⇠ 104 for vth . 300 km s�1, � ⇠ 102 at
vth ⇠ 1000 km s�1 and � ⇠ 1 for vth & 3000 km s�1.

Figure 1 shows the abundance constraint represented
by Eq. (22): the blue shaded region is the exclusion re-
gion. Since this constraint follows from the fact that the
Debye length exceeds the galaxy cluster scale, it is la-
beled as “clusters Debye”. Note that this region is com-
puted using exact Eqs. (19), (15), (13), (11) and the
interpolating function (24) for �. The exclusion region
from the extended Parker limit, Eq. (10), is also shown
as the green shaded area. The black horizontal region
at the top is excluded because ⌦M exceeds that of the
matter, which is impossible. The grey band on the right
corresponds to monopole masses exceeding the Planck
mass mPlanck = (~c/G)1/2 ' 1.22⇥ 1019 GeV. The ver-
tical dotted line marks where, vth ⇠ c, i.e., the magnetic
monopoles are relativistic to the left of this line. The
observational upper limits in Eq. (9) are shown as a red
broken curve with the downward arrow.

Figure 1 implies that the Debye limit strengthens the
abundance constraint by several orders of magnitude in
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the most interesting region of monopole masses. More-
over, there is an absolute upper limit on the abundance:

⌦M . 3⇥ 10�4
. (25)

That is, the contribution of monopoles to the overall
mass budget of the Universe is highly subdominant, ir-
respective of their mass. In fact, the plasma constraint
is not strongly mass dependent. The ⌦M upper limit is
within the range of 10�4 � 10�5 for the range of masses
1015 . mM . 1019 GeV. This is largely because of the
gravitational clustering of monopoles in large dark mat-
ter halos of galaxy clusters, which becomes important at
masses mM & 1017 GeV. For masses mM . 1015 GeV,
the extended Parker limit is more stringent. The above
absolute limit assumes the estimate of vth from Eq. (12)
and hence slightly depends on it, being less stringent for
larger vth.

From the absolute ⌦M -limit, Eq. (25), one obtains the
number density at Earth using Eq. (13) with h

2� ⇠ 1 to
be nM . 10�26 cm�3. This corresponds to the monopole
flux upper limit:

FM . 3⇥ 10�19
m

�3/2
17 cm�2 s�1 sr�1

, (26)

which is significantly tighter than the previous limit in
Eq. (9).

Figure 1 also shows the conditions when two charac-
teristic scales, the plasma skin depth and the magnetic
Debye length, are comparable to the present day horizon
scale. We assume� = 1 for these curves because no grav-
itational trapping occurs on this scale. The skin depth
represents a characteristic scale of various electromag-
netic plasma phenomena. The horizon-scale skin depth
(shown by magenta dashed curve) shows the conditions
when these scales are comparable. Below the line, the
skin depth exceeds the observed size of the Universe.

Even more interesting is the horizon-scale magnetic
Debye length (shown in Figure 1 as a solid brown line)
because the Debye length represents a characteristic scale
below which plasma provides no shielding e↵ect. Obvi-
ously, below this line, the magnetic Debye length is larger
than the size of the Universe, i.e., no shielding of mag-
netic fields at all scales is possible. Thus, we predict that
if future observations will detect fields coherent on Gpc
scales, this would exclude the region above the curve and
thus further limit the monopole abundance by orders of
magnitude, to the region ⌦M < 10�8. This value is,
coincidentally, close to the theoretically predicted abun-
dance given by Eq. (8) after diluted by a factor ⇠ e

60 by
inflation: ⌦M ⇠ 10�11

m
4
17. If inflation proceeds longer,

the dilution of monopoles by ⇠ e
N (N being the number

of e-folds) will proportionally reduce their current ⌦M

well below 10�11, where the plasma collective e↵ects are
harder to observe.

IV. MAGNETIC LANGMUIR WAVES

If �D is smaller than the horizon scale, we predict an
interesting new phenomenon – the magnetic Langmuir
wave. Its dispersion relation is given by Eq. (16). Like
its conventional electrostatic counterpart, this wave is
caused by charge separation and inertia. It can be ex-
cited by time-dependent by dynamic magnetic fields in
galaxy clusters, in jets and outflows from galaxies, as
well as by monopole plasma instabilities driven by flow
inhomogeneities during the formation of the large-scale
structure, e.g., assembly of dark matter sheets and fila-
ments, and mergers of galactic and cluster halos.
Observationally, such a wave may be discerned via its

“zebra pattern” of an alternating magnetic field with a
characteristic wavelength �D ⇠ �wave ⇠ 1/|k|, where k is
the wave vector. This pattern can be detected with Fara-
day rotation and synchrotron emission by energetic elec-
trons. The “smoking gun” signature of the wave would
be the alignment of k and B vectors on the sky. This
is because a Langmuir wave is longitudinal, k ·B 6= 0,
i.e., the B-field is manifestly non-divergence-free. With-
out monopoles, r · B = 0 implies k ·B = 0 identically,
i.e., the field is aligned with the interfaces, as it is seen
in tangential discontinuities, for example. Whether the
pattern has the k ·B 6= 0 signature, can be inferred from
radiation polarization measurements of the field orienta-
tion.
The amplitude of the wave can readily be estimated

from r ·B = 4⇡gD(n+ � n�), yielding

B ⇠ 4⇡gD�nM�wave (27)

⇠ (100 Gauss)
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3⇥ 10�4

◆1/2

�1/2
m

�1/2
17

�nM

nM

,

where �nM/nM = (n+ � n�)/nM is the dimensionless
density perturbation due to the magnetic charge separa-
tion, and we assumed that �wave ⇠ �D.
Together with the observational upper limit of B <

10�15 Gauss at scales > 100 Mpc, this implies very
small density perturbations of order �nM/nM . 10�17

if ⌦M ⇠ 10�4. Obviously, such waves are in the linear
regime amenable to theoretical studies. Of course, the
“zebra pattern” would only be seen if a single wave is ex-
cited. Quite often, an entire spectrum of waves is present
in plasmas. These waves would be seen as just standard
turbulent B-fields with some spectral distribution. The
turbulence will rather look like a “leopard spots” pat-
tern similar to that of the magnetohydrodynamic (MHD)
turbulence. Projection e↵ects can smear the pattern,
though. Observational demonstration of k ·B 6= 0 in
this turbulence may be di�cult.

V. ORIGIN OF COSMOLOGICAL FIELDS

Interestingly, no magnetic fields on scales larger than
a few Mpc have so far been reliably observed. The up-

Monopoles cannot 
constitute dark matter

(MM & Loeb, JCAP, 2017)
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As in any plasma, magnetic Langmuir waves must exist in monopole plasma
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that

� � 1 =
gBl

p
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mMc2
=

gB
p
lL

mMc2

' 5.7⇥ 10�5
nB�6(l�2L0)
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m
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17 , (11)

where n is an integer, B�6 = B/(10�6 Gauss) is the typi-
cal intracluster field strength, l�2 = l/(10�2 Mpc) is the
field coherence length, L0 = L/(1 Mpc) is the size of
the magnetized region. Henceforth, we assume the Dirac
charge g = gD, so that n = 1, for simplicity. The general
case can easily be restored.

This yields the characteristic thermal velocity to be

vth/c '
⇢

1, if mM . 1013 GeV,

10�2
m

�1/2
17 , if mM & 1013 GeV.

(12)

This estimate is about an order of magnitude larger than

the previously derived, (vth/c) ⇠ 10�3
m

�1/2
17 , based on

the Galactic magnetic fields, yet it is rather conserva-
tive. Indeed, the largest magnetic structures known are
radio relics [19, 20]. They extend over the distances
L ⇠ 2 Mpc, have magnetic fields of strength B�6 ⇠ 3
with the coherence length l ⇠ L, based on the lack of
substantial variation of polarization of the radio emis-
sion. These values yield almost an order of magnitude
larger velocity. Since radio relics are rare, however, we
do not expect them to contribute much to the energiza-
tion of the entire cosmic monopole plasma, hence the
estimate (12) is adopted hereafter.

The total number density of monopoles is estimated to
be

nM = n+ + n� =
⌦M⇢c�

�mM

' (10�22cm�3)⌦Mh
2
m

�1
17 �,

(13)
where n+ and n� are the local densities of positive and
negative monopoles and � = ⇢M/⇢̄M is the overden-
sity. Hereafter, our numerical estimates assume non-
relativistic monopoles, � ' 1, unless stated otherwise.
This density corresponds to the mean distance between
the particles of a thousand kilometers or more.

Unless the monopoles are very massive, they are dis-
tributed nearly uniformly, hence � ' 1. However,
the current random velocities of particles with mM &
1017 GeV are comparable to or below the escape veloc-
ities from large galaxy clusters, vesc ⇠ 1000 km s�1.
Thus, such monopoles can be gravitationally trapped
with their density being greatly enhanced. For instance,
assuming that the monopole density follows the dark
matter density for vth ⌧ vesc as described by the NFW
profile [21], the density at the scale radius, rs (where
the velocity dispersion is approximately maximal) is
⇢s ⇠ ⇢vir(rvir/rs)3 ⇠ ⇢virc

3
⇤, where rvir and ⇢vir are

the virial radius and the density at the virial radius
and c⇤ = rvir/rs is the concentration parameter of the
NFW profile. In turn, the dark matter overdensity at the
virial radius is typically ⇠ 50. For a typical galaxy clus-
ter, c⇤ ⇠ 6, it yields the monopole overdensity of order

63 ⇥ 50 ⇠ 104. Thus,

� ⇠
⇢

1, if vth � 1000 km s�1
,

104, if vth ⌧ 1000 km s�1
.

(14)

Collective plasma excitations have a characteristic fre-
quency – the plasma frequency – which in the case of a
monopole plasma becomes:

!p,M =
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2�)1/2m�1
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(15)
Such excitations can be called, by analogy with normal
plasmas, the magnetic Langmuir waves. They have the
dispersion relation

!
2 = !

2
p,M

+ 3k2v2
th
, (16)

where k is the wave number, v2
th

= kBT/mM , T is the
temperature and kB is the Boltzmann constant. These
waves are caused by charge separation and inertia, and
are longitudinal, k||B̃, because the perturbed field is no
longer divergence-free: r · B̃ = 4⇡gD(n+ � n�).
The magnetic Langmuir wave, by analogy with the nor-

mal one, should experience collisionless (Landau) damp-
ing, which is particularly strong when the wave phase ve-
locity is comparable to the thermal velocity, vph = !/k '
vth. The Landau damping rate, defined as the imaginary
part of a complex frequency, is given by:

�Landau ' ⇡!p,M

2k2nM

df0(v)

dv

����
v=!/k

, (17)

where f0(v) is the unperturbed distribution function of
monopoles and

R
f0 dv = nM . Note that the wave fields

are / exp(ik · x� i!t+�t). Hence damping occurs when
df0/dv is negative, as it is for the Maxwellian distribution
function, for example.
An electromagnetic wave is another normal mode in

such a plasma, with a very similar dispersion relation,
!
2 = !

2
p,M

+ k
2
c
2. The characteristic spatial scale asso-

ciated with this eigenmode is the skin length:

d = c/!p,M ' (1025cm) (⌦Mh
2�)�1/2

m17. (18)

Since !p,M is extremely small, the electromagnetic wave
propagation is not significantly a↵ected. A low-frequency
acoustic mode, with the dispersion relation !

2 = v
2
s
k
2,

can also exist in the monopole plasma, where v2
s
= �̂v

2
th

is
the sound speed and the e↵ective adiabatic index �̂ & 1.
Since vs ⇠ vth, this mode is e�ciently damped by Landau
damping, as described by Eq. (17).
The Debye length in normal plasmas characterizes

screening of electric fields. Similarly, the magnetic De-
bye length determines the scale above which the plasma
is magnetically quasi-neutral,

�D =
vth

!p,M

' (1023cm) (⌦Mh
2�)�1/2

m
1/2
17 . (19)
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where n is an integer, B�6 = B/(10�6 Gauss) is the typi-
cal intracluster field strength, l�2 = l/(10�2 Mpc) is the
field coherence length, L0 = L/(1 Mpc) is the size of
the magnetized region. Henceforth, we assume the Dirac
charge g = gD, so that n = 1, for simplicity. The general
case can easily be restored.

This yields the characteristic thermal velocity to be
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the Galactic magnetic fields, yet it is rather conserva-
tive. Indeed, the largest magnetic structures known are
radio relics [19, 20]. They extend over the distances
L ⇠ 2 Mpc, have magnetic fields of strength B�6 ⇠ 3
with the coherence length l ⇠ L, based on the lack of
substantial variation of polarization of the radio emis-
sion. These values yield almost an order of magnitude
larger velocity. Since radio relics are rare, however, we
do not expect them to contribute much to the energiza-
tion of the entire cosmic monopole plasma, hence the
estimate (12) is adopted hereafter.

The total number density of monopoles is estimated to
be
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where n+ and n� are the local densities of positive and
negative monopoles and � = ⇢M/⇢̄M is the overden-
sity. Hereafter, our numerical estimates assume non-
relativistic monopoles, � ' 1, unless stated otherwise.
This density corresponds to the mean distance between
the particles of a thousand kilometers or more.

Unless the monopoles are very massive, they are dis-
tributed nearly uniformly, hence � ' 1. However,
the current random velocities of particles with mM &
1017 GeV are comparable to or below the escape veloc-
ities from large galaxy clusters, vesc ⇠ 1000 km s�1.
Thus, such monopoles can be gravitationally trapped
with their density being greatly enhanced. For instance,
assuming that the monopole density follows the dark
matter density for vth ⌧ vesc as described by the NFW
profile [21], the density at the scale radius, rs (where
the velocity dispersion is approximately maximal) is
⇢s ⇠ ⇢vir(rvir/rs)3 ⇠ ⇢virc
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⇤, where rvir and ⇢vir are

the virial radius and the density at the virial radius
and c⇤ = rvir/rs is the concentration parameter of the
NFW profile. In turn, the dark matter overdensity at the
virial radius is typically ⇠ 50. For a typical galaxy clus-
ter, c⇤ ⇠ 6, it yields the monopole overdensity of order
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Such excitations can be called, by analogy with normal
plasmas, the magnetic Langmuir waves. They have the
dispersion relation
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where k is the wave number, v2
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= kBT/mM , T is the
temperature and kB is the Boltzmann constant. These
waves are caused by charge separation and inertia, and
are longitudinal, k||B̃, because the perturbed field is no
longer divergence-free: r · B̃ = 4⇡gD(n+ � n�).
The magnetic Langmuir wave, by analogy with the nor-

mal one, should experience collisionless (Landau) damp-
ing, which is particularly strong when the wave phase ve-
locity is comparable to the thermal velocity, vph = !/k '
vth. The Landau damping rate, defined as the imaginary
part of a complex frequency, is given by:
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where f0(v) is the unperturbed distribution function of
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function, for example.
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Since !p,M is extremely small, the electromagnetic wave
propagation is not significantly a↵ected. A low-frequency
acoustic mode, with the dispersion relation !
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can also exist in the monopole plasma, where v2
s
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is
the sound speed and the e↵ective adiabatic index �̂ & 1.
Since vs ⇠ vth, this mode is e�ciently damped by Landau
damping, as described by Eq. (17).
The Debye length in normal plasmas characterizes

screening of electric fields. Similarly, the magnetic De-
bye length determines the scale above which the plasma
is magnetically quasi-neutral,
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Must be seen as "zebra pattern" of an alternating B-field with wavelength
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the most interesting region of monopole masses. More-
over, there is an absolute upper limit on the abundance:

⌦M . 3⇥ 10�4
. (25)

That is, the contribution of monopoles to the overall
mass budget of the Universe is highly subdominant, ir-
respective of their mass. In fact, the plasma constraint
is not strongly mass dependent. The ⌦M upper limit is
within the range of 10�4 � 10�5 for the range of masses
1015 . mM . 1019 GeV. This is largely because of the
gravitational clustering of monopoles in large dark mat-
ter halos of galaxy clusters, which becomes important at
masses mM & 1017 GeV. For masses mM . 1015 GeV,
the extended Parker limit is more stringent. The above
absolute limit assumes the estimate of vth from Eq. (12)
and hence slightly depends on it, being less stringent for
larger vth.

From the absolute ⌦M -limit, Eq. (25), one obtains the
number density at Earth using Eq. (13) with h

2� ⇠ 1 to
be nM . 10�26 cm�3. This corresponds to the monopole
flux upper limit:

FM . 3⇥ 10�19
m

�3/2
17 cm�2 s�1 sr�1

, (26)

which is significantly tighter than the previous limit in
Eq. (9).

Figure 1 also shows the conditions when two charac-
teristic scales, the plasma skin depth and the magnetic
Debye length, are comparable to the present day horizon
scale. We assume� = 1 for these curves because no grav-
itational trapping occurs on this scale. The skin depth
represents a characteristic scale of various electromag-
netic plasma phenomena. The horizon-scale skin depth
(shown by magenta dashed curve) shows the conditions
when these scales are comparable. Below the line, the
skin depth exceeds the observed size of the Universe.

Even more interesting is the horizon-scale magnetic
Debye length (shown in Figure 1 as a solid brown line)
because the Debye length represents a characteristic scale
below which plasma provides no shielding e↵ect. Obvi-
ously, below this line, the magnetic Debye length is larger
than the size of the Universe, i.e., no shielding of mag-
netic fields at all scales is possible. Thus, we predict that
if future observations will detect fields coherent on Gpc
scales, this would exclude the region above the curve and
thus further limit the monopole abundance by orders of
magnitude, to the region ⌦M < 10�8. This value is,
coincidentally, close to the theoretically predicted abun-
dance given by Eq. (8) after diluted by a factor ⇠ e

60 by
inflation: ⌦M ⇠ 10�11

m
4
17. If inflation proceeds longer,

the dilution of monopoles by ⇠ e
N (N being the number

of e-folds) will proportionally reduce their current ⌦M

well below 10�11, where the plasma collective e↵ects are
harder to observe.

IV. MAGNETIC LANGMUIR WAVES

If �D is smaller than the horizon scale, we predict an
interesting new phenomenon – the magnetic Langmuir
wave. Its dispersion relation is given by Eq. (16). Like
its conventional electrostatic counterpart, this wave is
caused by charge separation and inertia. It can be ex-
cited by time-dependent by dynamic magnetic fields in
galaxy clusters, in jets and outflows from galaxies, as
well as by monopole plasma instabilities driven by flow
inhomogeneities during the formation of the large-scale
structure, e.g., assembly of dark matter sheets and fila-
ments, and mergers of galactic and cluster halos.
Observationally, such a wave may be discerned via its

“zebra pattern” of an alternating magnetic field with a
characteristic wavelength �D ⇠ �wave ⇠ 1/|k|, where k is
the wave vector. This pattern can be detected with Fara-
day rotation and synchrotron emission by energetic elec-
trons. The “smoking gun” signature of the wave would
be the alignment of k and B vectors on the sky. This
is because a Langmuir wave is longitudinal, k ·B 6= 0,
i.e., the B-field is manifestly non-divergence-free. With-
out monopoles, r · B = 0 implies k ·B = 0 identically,
i.e., the field is aligned with the interfaces, as it is seen
in tangential discontinuities, for example. Whether the
pattern has the k ·B 6= 0 signature, can be inferred from
radiation polarization measurements of the field orienta-
tion.
The amplitude of the wave can readily be estimated

from r ·B = 4⇡gD(n+ � n�), yielding

B ⇠ 4⇡gD�nM�wave (27)

⇠ (100 Gauss)
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where �nM/nM = (n+ � n�)/nM is the dimensionless
density perturbation due to the magnetic charge separa-
tion, and we assumed that �wave ⇠ �D.
Together with the observational upper limit of B <

10�15 Gauss at scales > 100 Mpc, this implies very
small density perturbations of order �nM/nM . 10�17

if ⌦M ⇠ 10�4. Obviously, such waves are in the linear
regime amenable to theoretical studies. Of course, the
“zebra pattern” would only be seen if a single wave is ex-
cited. Quite often, an entire spectrum of waves is present
in plasmas. These waves would be seen as just standard
turbulent B-fields with some spectral distribution. The
turbulence will rather look like a “leopard spots” pat-
tern similar to that of the magnetohydrodynamic (MHD)
turbulence. Projection e↵ects can smear the pattern,
though. Observational demonstration of k ·B 6= 0 in
this turbulence may be di�cult.

V. ORIGIN OF COSMOLOGICAL FIELDS

Interestingly, no magnetic fields on scales larger than
a few Mpc have so far been reliably observed. The up-

"Smoking gun" -- alignment of k and B, 
because B is not divergence-free 
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the most interesting region of monopole masses. More-
over, there is an absolute upper limit on the abundance:
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. (25)

That is, the contribution of monopoles to the overall
mass budget of the Universe is highly subdominant, ir-
respective of their mass. In fact, the plasma constraint
is not strongly mass dependent. The ⌦M upper limit is
within the range of 10�4 � 10�5 for the range of masses
1015 . mM . 1019 GeV. This is largely because of the
gravitational clustering of monopoles in large dark mat-
ter halos of galaxy clusters, which becomes important at
masses mM & 1017 GeV. For masses mM . 1015 GeV,
the extended Parker limit is more stringent. The above
absolute limit assumes the estimate of vth from Eq. (12)
and hence slightly depends on it, being less stringent for
larger vth.

From the absolute ⌦M -limit, Eq. (25), one obtains the
number density at Earth using Eq. (13) with h
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which is significantly tighter than the previous limit in
Eq. (9).

Figure 1 also shows the conditions when two charac-
teristic scales, the plasma skin depth and the magnetic
Debye length, are comparable to the present day horizon
scale. We assume� = 1 for these curves because no grav-
itational trapping occurs on this scale. The skin depth
represents a characteristic scale of various electromag-
netic plasma phenomena. The horizon-scale skin depth
(shown by magenta dashed curve) shows the conditions
when these scales are comparable. Below the line, the
skin depth exceeds the observed size of the Universe.

Even more interesting is the horizon-scale magnetic
Debye length (shown in Figure 1 as a solid brown line)
because the Debye length represents a characteristic scale
below which plasma provides no shielding e↵ect. Obvi-
ously, below this line, the magnetic Debye length is larger
than the size of the Universe, i.e., no shielding of mag-
netic fields at all scales is possible. Thus, we predict that
if future observations will detect fields coherent on Gpc
scales, this would exclude the region above the curve and
thus further limit the monopole abundance by orders of
magnitude, to the region ⌦M < 10�8. This value is,
coincidentally, close to the theoretically predicted abun-
dance given by Eq. (8) after diluted by a factor ⇠ e
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well below 10�11, where the plasma collective e↵ects are
harder to observe.

IV. MAGNETIC LANGMUIR WAVES

If �D is smaller than the horizon scale, we predict an
interesting new phenomenon – the magnetic Langmuir
wave. Its dispersion relation is given by Eq. (16). Like
its conventional electrostatic counterpart, this wave is
caused by charge separation and inertia. It can be ex-
cited by time-dependent by dynamic magnetic fields in
galaxy clusters, in jets and outflows from galaxies, as
well as by monopole plasma instabilities driven by flow
inhomogeneities during the formation of the large-scale
structure, e.g., assembly of dark matter sheets and fila-
ments, and mergers of galactic and cluster halos.
Observationally, such a wave may be discerned via its

“zebra pattern” of an alternating magnetic field with a
characteristic wavelength �D ⇠ �wave ⇠ 1/|k|, where k is
the wave vector. This pattern can be detected with Fara-
day rotation and synchrotron emission by energetic elec-
trons. The “smoking gun” signature of the wave would
be the alignment of k and B vectors on the sky. This
is because a Langmuir wave is longitudinal, k ·B 6= 0,
i.e., the B-field is manifestly non-divergence-free. With-
out monopoles, r · B = 0 implies k ·B = 0 identically,
i.e., the field is aligned with the interfaces, as it is seen
in tangential discontinuities, for example. Whether the
pattern has the k ·B 6= 0 signature, can be inferred from
radiation polarization measurements of the field orienta-
tion.
The amplitude of the wave can readily be estimated

from r ·B = 4⇡gD(n+ � n�), yielding

B ⇠ 4⇡gD�nM�wave (27)

⇠ (100 Gauss)

✓
⌦M

3⇥ 10�4

◆1/2

�1/2
m

�1/2
17

�nM

nM

,

where �nM/nM = (n+ � n�)/nM is the dimensionless
density perturbation due to the magnetic charge separa-
tion, and we assumed that �wave ⇠ �D.
Together with the observational upper limit of B <

10�15 Gauss at scales > 100 Mpc, this implies very
small density perturbations of order �nM/nM . 10�17

if ⌦M ⇠ 10�4. Obviously, such waves are in the linear
regime amenable to theoretical studies. Of course, the
“zebra pattern” would only be seen if a single wave is ex-
cited. Quite often, an entire spectrum of waves is present
in plasmas. These waves would be seen as just standard
turbulent B-fields with some spectral distribution. The
turbulence will rather look like a “leopard spots” pat-
tern similar to that of the magnetohydrodynamic (MHD)
turbulence. Projection e↵ects can smear the pattern,
though. Observational demonstration of k ·B 6= 0 in
this turbulence may be di�cult.

V. ORIGIN OF COSMOLOGICAL FIELDS

Interestingly, no magnetic fields on scales larger than
a few Mpc have so far been reliably observed. The up-
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per limit on the void fields (on scales of a Gigaparsec) is
approximately < 10�15 Gauss [22], a few orders of magni-
tude smaller than the nano-Gauss fields needed to explain
the intracluster magnetic fields by gas compression in the
accretion process, without additional field amplification
[23]. Remarkably, this fact is consistent with being due to
the shielding of the fields at scales � �D if �D ⇠ 1 Mpc.
Of course, the absence of the magnetic field sources is
another possible explanation.

The absence of B-field sources outside clusters brings
up a question about the origin of magnetic fields in clus-
ters. If ⌦M ⇠ 3⇥10�4, the observed fields may be created
by turbulence in the monopole plasma during structure
formation and accretion and possibly further amplified
by compression and MHD turbulence in the intracluster
ionized gas.

As the large scale structure forms, dark matter, bary-
onic matter and monopoles nearly follow each other un-
til shell crossing. At this moment, dark matter forms
multiple streams because it is collisionless and is non-
interacting via long-range forces other than gravity. In
contrast, ionized gas cannot form a multi-stream state on
large scales because plasma instabilities generate strong
electromagnetic fields [24]. These fields exist on small, ki-
netic scales and thus act as e↵ective collisions that scatter
particles over pitch angle to isotropize their motion and
thermalize their distribution function. This mechanism
establishes collisionless accretion shocks. Without such
electromagnetic turbulence, shocks would not exist be-
cause the Coulomb mean free path often exceeds the sys-
tem size by orders of magnitude. There are many mecha-
nisms that generate such electromagnetic fields, depend-
ing on specific conditions in the medium. For example,
in non-magnetized plasmas, Weibel instability is the pri-
mary process [25, 26].

By symmetry, the monopole plasma will behave simi-
larly. In the presence of the ionized gas, however, electric
fields cannot be e�ciently generated by the monopole
plasma instabilities because they are short-circuited by
the currents in the ionized gas. Thus, only magnetic
Langmuir turbulence can be produced. The resulting
e↵ect is a very e�cient beam-plasma two-stream insta-
bility, which is essentially inverse Landau damping. If
the streams have su�ciently large initial thermal veloc-
ities, the growth rate, �, is given by Eq. (17), which is
valid if vth � �/k. In the opposite case of cold plasmas,
vth ⌧ �/k, the entire beam is in Landau resonance and
the growth rate for k < !p,M/u is

� = ku(n1/n0)
1/2(k2u2

/!
2
p,M

� 1)�1/2
, (28)

where n0 and n1 are the densities of the bulk plasma
and the beam and u is the velocity of the beam. For
the accretion shock, n0 and n1 can be treated as the
downstream and upstream densities (hence n1 ⇠ n0) and
u is approximately the upstream velocity in the shock
frame. The maximum growth rate and the corresponding

wave number are
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The amplitude of the generated fields must be large

in order to e�ciently scatter and thermalize particles in
otherwise collisionless plasma. Thus, the energy den-
sity in the magnetic Langmuir turbulence should be
comparable to the kinetic energy density of the flow,
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where we assumed the typical overdensity � ⇠ 200 at
the location of the accretion shock near the virial radius.
These fields are generated on the time-scale of ⌧ ⇠

1/�max ⇠ 1/!p,M ⇠ 6 ⇥ 107 m17 yrs and have a charac-
teristic scale of �B ⇠ 1/kmax ⇠ u/!p,M ⇠ 60m17 kpc.
Note that once these magnetic fields are created, they
may be maintained and further amplified by currents and
turbulence in the ionized gas in the cluster, because its
dynamics should dominate over that of the monopoles,
since ⌦matter � ⌦M . Indeed, these fields can be the seed
fields which may be amplified by compression during gas
accretion toward the center of a cluster, as well as by
magnetic turbulent dynamo in clusters and galaxies.
The earliest epoch when cosmological magnetic fields

can be generated by this mechanism is the first shell
crossing when Zel’dovich pancakes start to form. Assum-
ing the characteristic redshift of z ⇠ 20, the monopole
density should be a factor of (1 + z)3 larger than that
at present, Eq. (13), with � ⇠ 1. Also assuming
u ⇠ 1 km s�1 as a typical speed at that epoch, we esti-
mate that the Zel’dovich pancakes should be magnetized
with the field of magnitude B ⇠ 2 ⇥ 10�9 Gauss and
characteristic scale of �B ⇠ 1 kpc. It may be very dif-
ficult to observe these fields (unless the pancake is seen
nearly edge-on) because of the small filling factor of the
pancakes. If some fast radio bursts originate at such high
redshifts [27], they can be used to detect these fields by
Faraday rotation.

VI. CONCLUSIONS

In this paper we demonstrated that if magnetic
monopoles exist, then they would form a plasma, whose
properties are very similar to those of a collisionless
electron-positron plasma without magnetic fields. The
plasma collective e↵ects place a strong constraint on
the monopole abundance. Particularly, the existence of
micro-Gauss magnetic fields in galaxy clusters and ra-
dio relics implies that the Debye scale is larger than a
Mpc. This sets a universal upper limit on the monopole
abundance and flux, as stated in Eqs. (25), (26). We

0.3 micro-Gauss, 100 kpc fields at the accretion shock radius (!) 

+ can be further amplified by further compression of the flow 
and turbulent motions in ionized gas of IGM
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per limit on the void fields (on scales of a Gigaparsec) is
approximately < 10�15 Gauss [22], a few orders of magni-
tude smaller than the nano-Gauss fields needed to explain
the intracluster magnetic fields by gas compression in the
accretion process, without additional field amplification
[23]. Remarkably, this fact is consistent with being due to
the shielding of the fields at scales � �D if �D ⇠ 1 Mpc.
Of course, the absence of the magnetic field sources is
another possible explanation.

The absence of B-field sources outside clusters brings
up a question about the origin of magnetic fields in clus-
ters. If ⌦M ⇠ 3⇥10�4, the observed fields may be created
by turbulence in the monopole plasma during structure
formation and accretion and possibly further amplified
by compression and MHD turbulence in the intracluster
ionized gas.

As the large scale structure forms, dark matter, bary-
onic matter and monopoles nearly follow each other un-
til shell crossing. At this moment, dark matter forms
multiple streams because it is collisionless and is non-
interacting via long-range forces other than gravity. In
contrast, ionized gas cannot form a multi-stream state on
large scales because plasma instabilities generate strong
electromagnetic fields [24]. These fields exist on small, ki-
netic scales and thus act as e↵ective collisions that scatter
particles over pitch angle to isotropize their motion and
thermalize their distribution function. This mechanism
establishes collisionless accretion shocks. Without such
electromagnetic turbulence, shocks would not exist be-
cause the Coulomb mean free path often exceeds the sys-
tem size by orders of magnitude. There are many mecha-
nisms that generate such electromagnetic fields, depend-
ing on specific conditions in the medium. For example,
in non-magnetized plasmas, Weibel instability is the pri-
mary process [25, 26].

By symmetry, the monopole plasma will behave simi-
larly. In the presence of the ionized gas, however, electric
fields cannot be e�ciently generated by the monopole
plasma instabilities because they are short-circuited by
the currents in the ionized gas. Thus, only magnetic
Langmuir turbulence can be produced. The resulting
e↵ect is a very e�cient beam-plasma two-stream insta-
bility, which is essentially inverse Landau damping. If
the streams have su�ciently large initial thermal veloc-
ities, the growth rate, �, is given by Eq. (17), which is
valid if vth � �/k. In the opposite case of cold plasmas,
vth ⌧ �/k, the entire beam is in Landau resonance and
the growth rate for k < !p,M/u is

� = ku(n1/n0)
1/2(k2u2
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where n0 and n1 are the densities of the bulk plasma
and the beam and u is the velocity of the beam. For
the accretion shock, n0 and n1 can be treated as the
downstream and upstream densities (hence n1 ⇠ n0) and
u is approximately the upstream velocity in the shock
frame. The maximum growth rate and the corresponding
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The amplitude of the generated fields must be large

in order to e�ciently scatter and thermalize particles in
otherwise collisionless plasma. Thus, the energy den-
sity in the magnetic Langmuir turbulence should be
comparable to the kinetic energy density of the flow,
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where we assumed the typical overdensity � ⇠ 200 at
the location of the accretion shock near the virial radius.
These fields are generated on the time-scale of ⌧ ⇠

1/�max ⇠ 1/!p,M ⇠ 6 ⇥ 107 m17 yrs and have a charac-
teristic scale of �B ⇠ 1/kmax ⇠ u/!p,M ⇠ 60m17 kpc.
Note that once these magnetic fields are created, they
may be maintained and further amplified by currents and
turbulence in the ionized gas in the cluster, because its
dynamics should dominate over that of the monopoles,
since ⌦matter � ⌦M . Indeed, these fields can be the seed
fields which may be amplified by compression during gas
accretion toward the center of a cluster, as well as by
magnetic turbulent dynamo in clusters and galaxies.
The earliest epoch when cosmological magnetic fields

can be generated by this mechanism is the first shell
crossing when Zel’dovich pancakes start to form. Assum-
ing the characteristic redshift of z ⇠ 20, the monopole
density should be a factor of (1 + z)3 larger than that
at present, Eq. (13), with � ⇠ 1. Also assuming
u ⇠ 1 km s�1 as a typical speed at that epoch, we esti-
mate that the Zel’dovich pancakes should be magnetized
with the field of magnitude B ⇠ 2 ⇥ 10�9 Gauss and
characteristic scale of �B ⇠ 1 kpc. It may be very dif-
ficult to observe these fields (unless the pancake is seen
nearly edge-on) because of the small filling factor of the
pancakes. If some fast radio bursts originate at such high
redshifts [27], they can be used to detect these fields by
Faraday rotation.

VI. CONCLUSIONS

In this paper we demonstrated that if magnetic
monopoles exist, then they would form a plasma, whose
properties are very similar to those of a collisionless
electron-positron plasma without magnetic fields. The
plasma collective e↵ects place a strong constraint on
the monopole abundance. Particularly, the existence of
micro-Gauss magnetic fields in galaxy clusters and ra-
dio relics implies that the Debye scale is larger than a
Mpc. This sets a universal upper limit on the monopole
abundance and flux, as stated in Eqs. (25), (26). We
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per limit on the void fields (on scales of a Gigaparsec) is
approximately < 10�15 Gauss [22], a few orders of magni-
tude smaller than the nano-Gauss fields needed to explain
the intracluster magnetic fields by gas compression in the
accretion process, without additional field amplification
[23]. Remarkably, this fact is consistent with being due to
the shielding of the fields at scales � �D if �D ⇠ 1 Mpc.
Of course, the absence of the magnetic field sources is
another possible explanation.

The absence of B-field sources outside clusters brings
up a question about the origin of magnetic fields in clus-
ters. If ⌦M ⇠ 3⇥10�4, the observed fields may be created
by turbulence in the monopole plasma during structure
formation and accretion and possibly further amplified
by compression and MHD turbulence in the intracluster
ionized gas.

As the large scale structure forms, dark matter, bary-
onic matter and monopoles nearly follow each other un-
til shell crossing. At this moment, dark matter forms
multiple streams because it is collisionless and is non-
interacting via long-range forces other than gravity. In
contrast, ionized gas cannot form a multi-stream state on
large scales because plasma instabilities generate strong
electromagnetic fields [24]. These fields exist on small, ki-
netic scales and thus act as e↵ective collisions that scatter
particles over pitch angle to isotropize their motion and
thermalize their distribution function. This mechanism
establishes collisionless accretion shocks. Without such
electromagnetic turbulence, shocks would not exist be-
cause the Coulomb mean free path often exceeds the sys-
tem size by orders of magnitude. There are many mecha-
nisms that generate such electromagnetic fields, depend-
ing on specific conditions in the medium. For example,
in non-magnetized plasmas, Weibel instability is the pri-
mary process [25, 26].

By symmetry, the monopole plasma will behave simi-
larly. In the presence of the ionized gas, however, electric
fields cannot be e�ciently generated by the monopole
plasma instabilities because they are short-circuited by
the currents in the ionized gas. Thus, only magnetic
Langmuir turbulence can be produced. The resulting
e↵ect is a very e�cient beam-plasma two-stream insta-
bility, which is essentially inverse Landau damping. If
the streams have su�ciently large initial thermal veloc-
ities, the growth rate, �, is given by Eq. (17), which is
valid if vth � �/k. In the opposite case of cold plasmas,
vth ⌧ �/k, the entire beam is in Landau resonance and
the growth rate for k < !p,M/u is
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where n0 and n1 are the densities of the bulk plasma
and the beam and u is the velocity of the beam. For
the accretion shock, n0 and n1 can be treated as the
downstream and upstream densities (hence n1 ⇠ n0) and
u is approximately the upstream velocity in the shock
frame. The maximum growth rate and the corresponding
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where we assumed the typical overdensity � ⇠ 200 at
the location of the accretion shock near the virial radius.
These fields are generated on the time-scale of ⌧ ⇠

1/�max ⇠ 1/!p,M ⇠ 6 ⇥ 107 m17 yrs and have a charac-
teristic scale of �B ⇠ 1/kmax ⇠ u/!p,M ⇠ 60m17 kpc.
Note that once these magnetic fields are created, they
may be maintained and further amplified by currents and
turbulence in the ionized gas in the cluster, because its
dynamics should dominate over that of the monopoles,
since ⌦matter � ⌦M . Indeed, these fields can be the seed
fields which may be amplified by compression during gas
accretion toward the center of a cluster, as well as by
magnetic turbulent dynamo in clusters and galaxies.
The earliest epoch when cosmological magnetic fields

can be generated by this mechanism is the first shell
crossing when Zel’dovich pancakes start to form. Assum-
ing the characteristic redshift of z ⇠ 20, the monopole
density should be a factor of (1 + z)3 larger than that
at present, Eq. (13), with � ⇠ 1. Also assuming
u ⇠ 1 km s�1 as a typical speed at that epoch, we esti-
mate that the Zel’dovich pancakes should be magnetized
with the field of magnitude B ⇠ 2 ⇥ 10�9 Gauss and
characteristic scale of �B ⇠ 1 kpc. It may be very dif-
ficult to observe these fields (unless the pancake is seen
nearly edge-on) because of the small filling factor of the
pancakes. If some fast radio bursts originate at such high
redshifts [27], they can be used to detect these fields by
Faraday rotation.

VI. CONCLUSIONS

In this paper we demonstrated that if magnetic
monopoles exist, then they would form a plasma, whose
properties are very similar to those of a collisionless
electron-positron plasma without magnetic fields. The
plasma collective e↵ects place a strong constraint on
the monopole abundance. Particularly, the existence of
micro-Gauss magnetic fields in galaxy clusters and ra-
dio relics implies that the Debye scale is larger than a
Mpc. This sets a universal upper limit on the monopole
abundance and flux, as stated in Eqs. (25), (26). We
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per limit on the void fields (on scales of a Gigaparsec) is
approximately < 10�15 Gauss [22], a few orders of magni-
tude smaller than the nano-Gauss fields needed to explain
the intracluster magnetic fields by gas compression in the
accretion process, without additional field amplification
[23]. Remarkably, this fact is consistent with being due to
the shielding of the fields at scales � �D if �D ⇠ 1 Mpc.
Of course, the absence of the magnetic field sources is
another possible explanation.

The absence of B-field sources outside clusters brings
up a question about the origin of magnetic fields in clus-
ters. If ⌦M ⇠ 3⇥10�4, the observed fields may be created
by turbulence in the monopole plasma during structure
formation and accretion and possibly further amplified
by compression and MHD turbulence in the intracluster
ionized gas.

As the large scale structure forms, dark matter, bary-
onic matter and monopoles nearly follow each other un-
til shell crossing. At this moment, dark matter forms
multiple streams because it is collisionless and is non-
interacting via long-range forces other than gravity. In
contrast, ionized gas cannot form a multi-stream state on
large scales because plasma instabilities generate strong
electromagnetic fields [24]. These fields exist on small, ki-
netic scales and thus act as e↵ective collisions that scatter
particles over pitch angle to isotropize their motion and
thermalize their distribution function. This mechanism
establishes collisionless accretion shocks. Without such
electromagnetic turbulence, shocks would not exist be-
cause the Coulomb mean free path often exceeds the sys-
tem size by orders of magnitude. There are many mecha-
nisms that generate such electromagnetic fields, depend-
ing on specific conditions in the medium. For example,
in non-magnetized plasmas, Weibel instability is the pri-
mary process [25, 26].

By symmetry, the monopole plasma will behave simi-
larly. In the presence of the ionized gas, however, electric
fields cannot be e�ciently generated by the monopole
plasma instabilities because they are short-circuited by
the currents in the ionized gas. Thus, only magnetic
Langmuir turbulence can be produced. The resulting
e↵ect is a very e�cient beam-plasma two-stream insta-
bility, which is essentially inverse Landau damping. If
the streams have su�ciently large initial thermal veloc-
ities, the growth rate, �, is given by Eq. (17), which is
valid if vth � �/k. In the opposite case of cold plasmas,
vth ⌧ �/k, the entire beam is in Landau resonance and
the growth rate for k < !p,M/u is
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where n0 and n1 are the densities of the bulk plasma
and the beam and u is the velocity of the beam. For
the accretion shock, n0 and n1 can be treated as the
downstream and upstream densities (hence n1 ⇠ n0) and
u is approximately the upstream velocity in the shock
frame. The maximum growth rate and the corresponding
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where we assumed the typical overdensity � ⇠ 200 at
the location of the accretion shock near the virial radius.
These fields are generated on the time-scale of ⌧ ⇠

1/�max ⇠ 1/!p,M ⇠ 6 ⇥ 107 m17 yrs and have a charac-
teristic scale of �B ⇠ 1/kmax ⇠ u/!p,M ⇠ 60m17 kpc.
Note that once these magnetic fields are created, they
may be maintained and further amplified by currents and
turbulence in the ionized gas in the cluster, because its
dynamics should dominate over that of the monopoles,
since ⌦matter � ⌦M . Indeed, these fields can be the seed
fields which may be amplified by compression during gas
accretion toward the center of a cluster, as well as by
magnetic turbulent dynamo in clusters and galaxies.
The earliest epoch when cosmological magnetic fields

can be generated by this mechanism is the first shell
crossing when Zel’dovich pancakes start to form. Assum-
ing the characteristic redshift of z ⇠ 20, the monopole
density should be a factor of (1 + z)3 larger than that
at present, Eq. (13), with � ⇠ 1. Also assuming
u ⇠ 1 km s�1 as a typical speed at that epoch, we esti-
mate that the Zel’dovich pancakes should be magnetized
with the field of magnitude B ⇠ 2 ⇥ 10�9 Gauss and
characteristic scale of �B ⇠ 1 kpc. It may be very dif-
ficult to observe these fields (unless the pancake is seen
nearly edge-on) because of the small filling factor of the
pancakes. If some fast radio bursts originate at such high
redshifts [27], they can be used to detect these fields by
Faraday rotation.

VI. CONCLUSIONS

In this paper we demonstrated that if magnetic
monopoles exist, then they would form a plasma, whose
properties are very similar to those of a collisionless
electron-positron plasma without magnetic fields. The
plasma collective e↵ects place a strong constraint on
the monopole abundance. Particularly, the existence of
micro-Gauss magnetic fields in galaxy clusters and ra-
dio relics implies that the Debye scale is larger than a
Mpc. This sets a universal upper limit on the monopole
abundance and flux, as stated in Eqs. (25), (26). We



Monopoles for CREDO

B-fields accelerate monopoles

3

that

� � 1 =
gBl

p
Nc

mMc2
=

gB
p
lL

mMc2

' 5.7⇥ 10�5
nB�6(l�2L0)

1/2
m

�1
17 , (11)

where n is an integer, B�6 = B/(10�6 Gauss) is the typi-
cal intracluster field strength, l�2 = l/(10�2 Mpc) is the
field coherence length, L0 = L/(1 Mpc) is the size of
the magnetized region. Henceforth, we assume the Dirac
charge g = gD, so that n = 1, for simplicity. The general
case can easily be restored.

This yields the characteristic thermal velocity to be

vth/c '
⇢

1, if mM . 1013 GeV,

10�2
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17 , if mM & 1013 GeV.

(12)

This estimate is about an order of magnitude larger than

the previously derived, (vth/c) ⇠ 10�3
m

�1/2
17 , based on

the Galactic magnetic fields, yet it is rather conserva-
tive. Indeed, the largest magnetic structures known are
radio relics [19, 20]. They extend over the distances
L ⇠ 2 Mpc, have magnetic fields of strength B�6 ⇠ 3
with the coherence length l ⇠ L, based on the lack of
substantial variation of polarization of the radio emis-
sion. These values yield almost an order of magnitude
larger velocity. Since radio relics are rare, however, we
do not expect them to contribute much to the energiza-
tion of the entire cosmic monopole plasma, hence the
estimate (12) is adopted hereafter.

The total number density of monopoles is estimated to
be

nM = n+ + n� =
⌦M⇢c�

�mM

' (10�22cm�3)⌦Mh
2
m
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17 �,

(13)
where n+ and n� are the local densities of positive and
negative monopoles and � = ⇢M/⇢̄M is the overden-
sity. Hereafter, our numerical estimates assume non-
relativistic monopoles, � ' 1, unless stated otherwise.
This density corresponds to the mean distance between
the particles of a thousand kilometers or more.

Unless the monopoles are very massive, they are dis-
tributed nearly uniformly, hence � ' 1. However,
the current random velocities of particles with mM &
1017 GeV are comparable to or below the escape veloc-
ities from large galaxy clusters, vesc ⇠ 1000 km s�1.
Thus, such monopoles can be gravitationally trapped
with their density being greatly enhanced. For instance,
assuming that the monopole density follows the dark
matter density for vth ⌧ vesc as described by the NFW
profile [21], the density at the scale radius, rs (where
the velocity dispersion is approximately maximal) is
⇢s ⇠ ⇢vir(rvir/rs)3 ⇠ ⇢virc

3
⇤, where rvir and ⇢vir are

the virial radius and the density at the virial radius
and c⇤ = rvir/rs is the concentration parameter of the
NFW profile. In turn, the dark matter overdensity at the
virial radius is typically ⇠ 50. For a typical galaxy clus-
ter, c⇤ ⇠ 6, it yields the monopole overdensity of order

63 ⇥ 50 ⇠ 104. Thus,

� ⇠
⇢

1, if vth � 1000 km s�1
,

104, if vth ⌧ 1000 km s�1
.

(14)

Collective plasma excitations have a characteristic fre-
quency – the plasma frequency – which in the case of a
monopole plasma becomes:

!p,M =

✓
4⇡g2

D
nM

�mM

◆1/2

' (3⇥10�15s�1) (⌦Mh
2�)1/2m�1

17 .

(15)
Such excitations can be called, by analogy with normal
plasmas, the magnetic Langmuir waves. They have the
dispersion relation

!
2 = !

2
p,M

+ 3k2v2
th
, (16)

where k is the wave number, v2
th

= kBT/mM , T is the
temperature and kB is the Boltzmann constant. These
waves are caused by charge separation and inertia, and
are longitudinal, k||B̃, because the perturbed field is no
longer divergence-free: r · B̃ = 4⇡gD(n+ � n�).
The magnetic Langmuir wave, by analogy with the nor-

mal one, should experience collisionless (Landau) damp-
ing, which is particularly strong when the wave phase ve-
locity is comparable to the thermal velocity, vph = !/k '
vth. The Landau damping rate, defined as the imaginary
part of a complex frequency, is given by:

�Landau ' ⇡!p,M

2k2nM

df0(v)

dv

����
v=!/k

, (17)

where f0(v) is the unperturbed distribution function of
monopoles and

R
f0 dv = nM . Note that the wave fields

are / exp(ik · x� i!t+�t). Hence damping occurs when
df0/dv is negative, as it is for the Maxwellian distribution
function, for example.
An electromagnetic wave is another normal mode in

such a plasma, with a very similar dispersion relation,
!
2 = !

2
p,M

+ k
2
c
2. The characteristic spatial scale asso-

ciated with this eigenmode is the skin length:

d = c/!p,M ' (1025cm) (⌦Mh
2�)�1/2

m17. (18)

Since !p,M is extremely small, the electromagnetic wave
propagation is not significantly a↵ected. A low-frequency
acoustic mode, with the dispersion relation !

2 = v
2
s
k
2,

can also exist in the monopole plasma, where v2
s
= �̂v

2
th

is
the sound speed and the e↵ective adiabatic index �̂ & 1.
Since vs ⇠ vth, this mode is e�ciently damped by Landau
damping, as described by Eq. (17).
The Debye length in normal plasmas characterizes

screening of electric fields. Similarly, the magnetic De-
bye length determines the scale above which the plasma
is magnetically quasi-neutral,

�D =
vth

!p,M

' (1023cm) (⌦Mh
2�)�1/2

m
1/2
17 . (19)

2

dance is thus set by the correlation length of the scalar
field at T ⇠ Tc. Causality limits this length to the hori-
zon scale at that epoch. For an adiabatically expanding
Universe, the relic monopole abundance at the present
epoch is estimated to be [7, 8]:

⌦Mh
2 ' 1015

�
Tc/10

15 GeV
�3

m17, (8)

where m17 = mM/(1017 GeV), mM ⇠ Tc/↵ is the
monopole mass, h = H/(100 km s�1 Mpc�1) is the nor-
malized Hubble constant and ⌦M = ⇢̄M/⇢c is the density
parameter, i.e., the ratio of the average monopole density
in the Universe to the critical density ⇢c = 3H/8⇡G '
10�5 GeV cm�3, with G being Newton’s gravitational
constant. This implies the number density of monopoles
would be comparable to that of baryons, thus over-closing
the Universe due to their much higher mass, which is im-
possible. The most attractive solution to this ‘monopole
problem’ is inflation, which can dilute the primordial
monopole density by a factor of ⇠ e

N ⇠ 1026, where
N ⇠ 60 is the minimal number of inflation e-folds.

Despite extensive searches, magnetic monopoles have
never been observed with confidence. The searches in-
clude collider experiments, such as MODAL, TRISTAN,
PETRA, CDF, D0, HERA, and cosmic ray observatories,
such as MACRO, Baikal, Baksan-2, Soudan-2, Ohya,
KGF, AMANDA, ANTARES, IceCube; see the review
[5] and comprehensive bibliographies [9, 10] for details.
Experimental upper limits on the flux of monopoles at
Earth are, approximately,

FM .
⇢

10�16 cm�2 s�1 sr�1 for v/c . 0.8,
3⇥ 10�18 cm�2 s�1 sr�1 for v/c & 0.8.

(9)

The non-relativistic upper limit is mostly set by the dedi-
cated search with MACRO experiment at Gran Sasso [11]
and the relativistic upper limit is set by IceCube cosmic
ray detector in Antarctica [12].

These upper limits are consistent with a theoret-
ical constraint known as the ‘Parker limit’, FM <

10�16 cm�2 s�1 sr�1, based on the survival of Galac-
tic magnetic fields [13]. Indeed, the work done by
the magnetic fields in accelerating monopoles must
be replenished by the Galactic dynamo action, thus
jm ·B ⇠ (B2

/8⇡)⌧dynamo, where jm = gDnMv is the
monopole current, nM is the monopole number density
and ⌧dynamo ⇠ 108 yrs is the typical galactic dynamo
timescale. An improved ‘extended Parker limit’ [14] fol-
lows from the survival of protogalactic seed fields, yield-
ing

FM < 10�16
m17 cm�2 s�1 sr�1

. (10)

II. MONOPOLE PLASMA

At the current epoch, the Universe is filled with a fully
ionized gas – plasma. Because of long-range electromag-
netic interactions between electrons, protons, and other

ions, plasmas support collective instabilities and waves,
which are plasma normal modes, such as Alfven and
Langmuir waves. Thus, charged particle motions drasti-
cally di↵er from single-particle dynamics in electromag-
netic fields. If magnetic monopoles exist and their abun-
dance is large enough, then the symmetry of Maxwell’s
equations, Eqs. (3)–(5), dictates that the monopole dy-
namics should exhibit collective motions as well. In this
section, we discuss the properties of such a ‘magnetic
monopole plasma’ and the conditions for such a plasma
description to be valid.

First, we assume that the Universe ismagnetically neu-
tral, that is the amounts of positive and negative mag-
netic charges are equal so that the net magnetic charge
vanishes. This is a convenient ‘symmetry assumption’,
though it may be violated and if so, there will be some
net (but very weak) magnetic field. Second, it is also
likely that the masses of the positive and negative mag-
netic monopoles are equal, so for simplicity, we assume
that as well. Third, we take into account the presence of
the ionized gas (i.e., normal plasma) in the Universe. Its
dynamics is much faster and, hence, decoupled from that
of the monopole plasma since the monopoles are many
orders of magnitude more massive than the electrons and
ions, whereas their charge is larger by only two orders of
magnitude. The role of the ionized gas is crucial, though,
because it screens out electric fields and establishes quasi-
neutrality: no large-scale electric fields are present1.

In summary, we assure that the monopole plasma is:
(i) ‘magnetically neutral’ (no net charge), (ii) made of
particles with the same |g|/mM -ratio, and (iii) has van-
ishing electric fields. By the duality, given by Eqs. (6),
(7), this system is very similar to the simplest plasma
known: the collisionless unmagnetized electron-position
plasma whose properties are very well studied. For in-
stance, it supports propagation of electromagnetic waves
and of longitudinal Langmuir (electrostatic) waves which
can be Landau damped. This analogy allows us to pro-
ceed with quantitative calculations.

The monopoles should have some nonzero “thermal”
(random) velocity, vth, because they are accelerated by
magnetic fields in the same way electric charges are ac-
celerated by electric fields. The kinetic energy gained
is (� � 1)mMc

2 = gBl, where l is the path length and
� is the Lorentz factor. The largest systems with mag-
netic field observed so far are galaxy clusters. The typ-
ical intracluster medium magnetic fields have an ampli-
tude of a few micro-Gauss with coherence lengths of tens
of kiloparsecs, within the Mpc-cluster scale [15–19]. A
monopole moving throughNc ⇠ L/l independent patches
of coherent B-field attains the Lorentz factor, �, such

1
We neglect motional electric fields in astrophysical setups where

E ⇠ (v/c)B ⌧ B.

Therefore, realistic energies 
are about (below) 1e13 GeV 

1e11 GeV
1e13 GeV
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that

� � 1 =
gBl

p
Nc

mMc2
=

gB
p
lL

mMc2

' 5.7⇥ 10�5
nB�6(l�2L0)

1/2
m

�1
17 , (11)

where n is an integer, B�6 = B/(10�6 Gauss) is the typi-
cal intracluster field strength, l�2 = l/(10�2 Mpc) is the
field coherence length, L0 = L/(1 Mpc) is the size of
the magnetized region. Henceforth, we assume the Dirac
charge g = gD, so that n = 1, for simplicity. The general
case can easily be restored.

This yields the characteristic thermal velocity to be

vth/c '
⇢

1, if mM . 1013 GeV,

10�2
m

�1/2
17 , if mM & 1013 GeV.

(12)

This estimate is about an order of magnitude larger than

the previously derived, (vth/c) ⇠ 10�3
m

�1/2
17 , based on

the Galactic magnetic fields, yet it is rather conserva-
tive. Indeed, the largest magnetic structures known are
radio relics [19, 20]. They extend over the distances
L ⇠ 2 Mpc, have magnetic fields of strength B�6 ⇠ 3
with the coherence length l ⇠ L, based on the lack of
substantial variation of polarization of the radio emis-
sion. These values yield almost an order of magnitude
larger velocity. Since radio relics are rare, however, we
do not expect them to contribute much to the energiza-
tion of the entire cosmic monopole plasma, hence the
estimate (12) is adopted hereafter.

The total number density of monopoles is estimated to
be

nM = n+ + n� =
⌦M⇢c�

�mM

' (10�22cm�3)⌦Mh
2
m

�1
17 �,

(13)
where n+ and n� are the local densities of positive and
negative monopoles and � = ⇢M/⇢̄M is the overden-
sity. Hereafter, our numerical estimates assume non-
relativistic monopoles, � ' 1, unless stated otherwise.
This density corresponds to the mean distance between
the particles of a thousand kilometers or more.

Unless the monopoles are very massive, they are dis-
tributed nearly uniformly, hence � ' 1. However,
the current random velocities of particles with mM &
1017 GeV are comparable to or below the escape veloc-
ities from large galaxy clusters, vesc ⇠ 1000 km s�1.
Thus, such monopoles can be gravitationally trapped
with their density being greatly enhanced. For instance,
assuming that the monopole density follows the dark
matter density for vth ⌧ vesc as described by the NFW
profile [21], the density at the scale radius, rs (where
the velocity dispersion is approximately maximal) is
⇢s ⇠ ⇢vir(rvir/rs)3 ⇠ ⇢virc

3
⇤, where rvir and ⇢vir are

the virial radius and the density at the virial radius
and c⇤ = rvir/rs is the concentration parameter of the
NFW profile. In turn, the dark matter overdensity at the
virial radius is typically ⇠ 50. For a typical galaxy clus-
ter, c⇤ ⇠ 6, it yields the monopole overdensity of order

63 ⇥ 50 ⇠ 104. Thus,

� ⇠
⇢

1, if vth � 1000 km s�1
,

104, if vth ⌧ 1000 km s�1
.

(14)

Collective plasma excitations have a characteristic fre-
quency – the plasma frequency – which in the case of a
monopole plasma becomes:

!p,M =

✓
4⇡g2

D
nM

�mM

◆1/2

' (3⇥10�15s�1) (⌦Mh
2�)1/2m�1

17 .

(15)
Such excitations can be called, by analogy with normal
plasmas, the magnetic Langmuir waves. They have the
dispersion relation

!
2 = !

2
p,M

+ 3k2v2
th
, (16)

where k is the wave number, v2
th

= kBT/mM , T is the
temperature and kB is the Boltzmann constant. These
waves are caused by charge separation and inertia, and
are longitudinal, k||B̃, because the perturbed field is no
longer divergence-free: r · B̃ = 4⇡gD(n+ � n�).
The magnetic Langmuir wave, by analogy with the nor-

mal one, should experience collisionless (Landau) damp-
ing, which is particularly strong when the wave phase ve-
locity is comparable to the thermal velocity, vph = !/k '
vth. The Landau damping rate, defined as the imaginary
part of a complex frequency, is given by:

�Landau ' ⇡!p,M

2k2nM

df0(v)

dv

����
v=!/k

, (17)

where f0(v) is the unperturbed distribution function of
monopoles and

R
f0 dv = nM . Note that the wave fields

are / exp(ik · x� i!t+�t). Hence damping occurs when
df0/dv is negative, as it is for the Maxwellian distribution
function, for example.
An electromagnetic wave is another normal mode in

such a plasma, with a very similar dispersion relation,
!
2 = !

2
p,M

+ k
2
c
2. The characteristic spatial scale asso-

ciated with this eigenmode is the skin length:

d = c/!p,M ' (1025cm) (⌦Mh
2�)�1/2

m17. (18)

Since !p,M is extremely small, the electromagnetic wave
propagation is not significantly a↵ected. A low-frequency
acoustic mode, with the dispersion relation !

2 = v
2
s
k
2,

can also exist in the monopole plasma, where v2
s
= �̂v

2
th

is
the sound speed and the e↵ective adiabatic index �̂ & 1.
Since vs ⇠ vth, this mode is e�ciently damped by Landau
damping, as described by Eq. (17).
The Debye length in normal plasmas characterizes

screening of electric fields. Similarly, the magnetic De-
bye length determines the scale above which the plasma
is magnetically quasi-neutral,

�D =
vth

!p,M

' (1023cm) (⌦Mh
2�)�1/2

m
1/2
17 . (19)

2

dance is thus set by the correlation length of the scalar
field at T ⇠ Tc. Causality limits this length to the hori-
zon scale at that epoch. For an adiabatically expanding
Universe, the relic monopole abundance at the present
epoch is estimated to be [7, 8]:

⌦Mh
2 ' 1015

�
Tc/10

15 GeV
�3

m17, (8)

where m17 = mM/(1017 GeV), mM ⇠ Tc/↵ is the
monopole mass, h = H/(100 km s�1 Mpc�1) is the nor-
malized Hubble constant and ⌦M = ⇢̄M/⇢c is the density
parameter, i.e., the ratio of the average monopole density
in the Universe to the critical density ⇢c = 3H/8⇡G '
10�5 GeV cm�3, with G being Newton’s gravitational
constant. This implies the number density of monopoles
would be comparable to that of baryons, thus over-closing
the Universe due to their much higher mass, which is im-
possible. The most attractive solution to this ‘monopole
problem’ is inflation, which can dilute the primordial
monopole density by a factor of ⇠ e

N ⇠ 1026, where
N ⇠ 60 is the minimal number of inflation e-folds.

Despite extensive searches, magnetic monopoles have
never been observed with confidence. The searches in-
clude collider experiments, such as MODAL, TRISTAN,
PETRA, CDF, D0, HERA, and cosmic ray observatories,
such as MACRO, Baikal, Baksan-2, Soudan-2, Ohya,
KGF, AMANDA, ANTARES, IceCube; see the review
[5] and comprehensive bibliographies [9, 10] for details.
Experimental upper limits on the flux of monopoles at
Earth are, approximately,

FM .
⇢

10�16 cm�2 s�1 sr�1 for v/c . 0.8,
3⇥ 10�18 cm�2 s�1 sr�1 for v/c & 0.8.

(9)

The non-relativistic upper limit is mostly set by the dedi-
cated search with MACRO experiment at Gran Sasso [11]
and the relativistic upper limit is set by IceCube cosmic
ray detector in Antarctica [12].

These upper limits are consistent with a theoret-
ical constraint known as the ‘Parker limit’, FM <

10�16 cm�2 s�1 sr�1, based on the survival of Galac-
tic magnetic fields [13]. Indeed, the work done by
the magnetic fields in accelerating monopoles must
be replenished by the Galactic dynamo action, thus
jm ·B ⇠ (B2

/8⇡)⌧dynamo, where jm = gDnMv is the
monopole current, nM is the monopole number density
and ⌧dynamo ⇠ 108 yrs is the typical galactic dynamo
timescale. An improved ‘extended Parker limit’ [14] fol-
lows from the survival of protogalactic seed fields, yield-
ing

FM < 10�16
m17 cm�2 s�1 sr�1

. (10)

II. MONOPOLE PLASMA

At the current epoch, the Universe is filled with a fully
ionized gas – plasma. Because of long-range electromag-
netic interactions between electrons, protons, and other

ions, plasmas support collective instabilities and waves,
which are plasma normal modes, such as Alfven and
Langmuir waves. Thus, charged particle motions drasti-
cally di↵er from single-particle dynamics in electromag-
netic fields. If magnetic monopoles exist and their abun-
dance is large enough, then the symmetry of Maxwell’s
equations, Eqs. (3)–(5), dictates that the monopole dy-
namics should exhibit collective motions as well. In this
section, we discuss the properties of such a ‘magnetic
monopole plasma’ and the conditions for such a plasma
description to be valid.

First, we assume that the Universe ismagnetically neu-
tral, that is the amounts of positive and negative mag-
netic charges are equal so that the net magnetic charge
vanishes. This is a convenient ‘symmetry assumption’,
though it may be violated and if so, there will be some
net (but very weak) magnetic field. Second, it is also
likely that the masses of the positive and negative mag-
netic monopoles are equal, so for simplicity, we assume
that as well. Third, we take into account the presence of
the ionized gas (i.e., normal plasma) in the Universe. Its
dynamics is much faster and, hence, decoupled from that
of the monopole plasma since the monopoles are many
orders of magnitude more massive than the electrons and
ions, whereas their charge is larger by only two orders of
magnitude. The role of the ionized gas is crucial, though,
because it screens out electric fields and establishes quasi-
neutrality: no large-scale electric fields are present1.

In summary, we assure that the monopole plasma is:
(i) ‘magnetically neutral’ (no net charge), (ii) made of
particles with the same |g|/mM -ratio, and (iii) has van-
ishing electric fields. By the duality, given by Eqs. (6),
(7), this system is very similar to the simplest plasma
known: the collisionless unmagnetized electron-position
plasma whose properties are very well studied. For in-
stance, it supports propagation of electromagnetic waves
and of longitudinal Langmuir (electrostatic) waves which
can be Landau damped. This analogy allows us to pro-
ceed with quantitative calculations.

The monopoles should have some nonzero “thermal”
(random) velocity, vth, because they are accelerated by
magnetic fields in the same way electric charges are ac-
celerated by electric fields. The kinetic energy gained
is (� � 1)mMc

2 = gBl, where l is the path length and
� is the Lorentz factor. The largest systems with mag-
netic field observed so far are galaxy clusters. The typ-
ical intracluster medium magnetic fields have an ampli-
tude of a few micro-Gauss with coherence lengths of tens
of kiloparsecs, within the Mpc-cluster scale [15–19]. A
monopole moving throughNc ⇠ L/l independent patches
of coherent B-field attains the Lorentz factor, �, such

1
We neglect motional electric fields in astrophysical setups where

E ⇠ (v/c)B ⌧ B.

Therefore, realistic energies 
are about (below) 1e13 GeV

nonrelativistic -- unlikely to produce showers

(monopoles would behave simply 
as multiply charged dust particles)
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Take home messages

If magnetic monopoles exist:

Observed cluster and radio relic fields strongly constrain monopole abundance:

5

the most interesting region of monopole masses. More-
over, there is an absolute upper limit on the abundance:

⌦M . 3⇥ 10�4
. (25)

That is, the contribution of monopoles to the overall
mass budget of the Universe is highly subdominant, ir-
respective of their mass. In fact, the plasma constraint
is not strongly mass dependent. The ⌦M upper limit is
within the range of 10�4 � 10�5 for the range of masses
1015 . mM . 1019 GeV. This is largely because of the
gravitational clustering of monopoles in large dark mat-
ter halos of galaxy clusters, which becomes important at
masses mM & 1017 GeV. For masses mM . 1015 GeV,
the extended Parker limit is more stringent. The above
absolute limit assumes the estimate of vth from Eq. (12)
and hence slightly depends on it, being less stringent for
larger vth.

From the absolute ⌦M -limit, Eq. (25), one obtains the
number density at Earth using Eq. (13) with h

2� ⇠ 1 to
be nM . 10�26 cm�3. This corresponds to the monopole
flux upper limit:

FM . 3⇥ 10�19
m

�3/2
17 cm�2 s�1 sr�1

, (26)

which is significantly tighter than the previous limit in
Eq. (9).

Figure 1 also shows the conditions when two charac-
teristic scales, the plasma skin depth and the magnetic
Debye length, are comparable to the present day horizon
scale. We assume� = 1 for these curves because no grav-
itational trapping occurs on this scale. The skin depth
represents a characteristic scale of various electromag-
netic plasma phenomena. The horizon-scale skin depth
(shown by magenta dashed curve) shows the conditions
when these scales are comparable. Below the line, the
skin depth exceeds the observed size of the Universe.

Even more interesting is the horizon-scale magnetic
Debye length (shown in Figure 1 as a solid brown line)
because the Debye length represents a characteristic scale
below which plasma provides no shielding e↵ect. Obvi-
ously, below this line, the magnetic Debye length is larger
than the size of the Universe, i.e., no shielding of mag-
netic fields at all scales is possible. Thus, we predict that
if future observations will detect fields coherent on Gpc
scales, this would exclude the region above the curve and
thus further limit the monopole abundance by orders of
magnitude, to the region ⌦M < 10�8. This value is,
coincidentally, close to the theoretically predicted abun-
dance given by Eq. (8) after diluted by a factor ⇠ e

60 by
inflation: ⌦M ⇠ 10�11

m
4
17. If inflation proceeds longer,

the dilution of monopoles by ⇠ e
N (N being the number

of e-folds) will proportionally reduce their current ⌦M

well below 10�11, where the plasma collective e↵ects are
harder to observe.

IV. MAGNETIC LANGMUIR WAVES

If �D is smaller than the horizon scale, we predict an
interesting new phenomenon – the magnetic Langmuir
wave. Its dispersion relation is given by Eq. (16). Like
its conventional electrostatic counterpart, this wave is
caused by charge separation and inertia. It can be ex-
cited by time-dependent by dynamic magnetic fields in
galaxy clusters, in jets and outflows from galaxies, as
well as by monopole plasma instabilities driven by flow
inhomogeneities during the formation of the large-scale
structure, e.g., assembly of dark matter sheets and fila-
ments, and mergers of galactic and cluster halos.
Observationally, such a wave may be discerned via its

“zebra pattern” of an alternating magnetic field with a
characteristic wavelength �D ⇠ �wave ⇠ 1/|k|, where k is
the wave vector. This pattern can be detected with Fara-
day rotation and synchrotron emission by energetic elec-
trons. The “smoking gun” signature of the wave would
be the alignment of k and B vectors on the sky. This
is because a Langmuir wave is longitudinal, k ·B 6= 0,
i.e., the B-field is manifestly non-divergence-free. With-
out monopoles, r · B = 0 implies k ·B = 0 identically,
i.e., the field is aligned with the interfaces, as it is seen
in tangential discontinuities, for example. Whether the
pattern has the k ·B 6= 0 signature, can be inferred from
radiation polarization measurements of the field orienta-
tion.
The amplitude of the wave can readily be estimated

from r ·B = 4⇡gD(n+ � n�), yielding

B ⇠ 4⇡gD�nM�wave (27)

⇠ (100 Gauss)

✓
⌦M

3⇥ 10�4

◆1/2

�1/2
m

�1/2
17

�nM

nM

,

where �nM/nM = (n+ � n�)/nM is the dimensionless
density perturbation due to the magnetic charge separa-
tion, and we assumed that �wave ⇠ �D.
Together with the observational upper limit of B <

10�15 Gauss at scales > 100 Mpc, this implies very
small density perturbations of order �nM/nM . 10�17

if ⌦M ⇠ 10�4. Obviously, such waves are in the linear
regime amenable to theoretical studies. Of course, the
“zebra pattern” would only be seen if a single wave is ex-
cited. Quite often, an entire spectrum of waves is present
in plasmas. These waves would be seen as just standard
turbulent B-fields with some spectral distribution. The
turbulence will rather look like a “leopard spots” pat-
tern similar to that of the magnetohydrodynamic (MHD)
turbulence. Projection e↵ects can smear the pattern,
though. Observational demonstration of k ·B 6= 0 in
this turbulence may be di�cult.

V. ORIGIN OF COSMOLOGICAL FIELDS

Interestingly, no magnetic fields on scales larger than
a few Mpc have so far been reliably observed. The up-

"Smoking gun" of monopoles -- "zebra pattern" of alternating B-field with 

Hard to observe with CR detectors:  

--monopoles are either too slow or there're too few of them 

--possible range of masses there there is hope is roughly ~ 1e8 - 1e12 eV
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the most interesting region of monopole masses. More-
over, there is an absolute upper limit on the abundance:

⌦M . 3⇥ 10�4
. (25)

That is, the contribution of monopoles to the overall
mass budget of the Universe is highly subdominant, ir-
respective of their mass. In fact, the plasma constraint
is not strongly mass dependent. The ⌦M upper limit is
within the range of 10�4 � 10�5 for the range of masses
1015 . mM . 1019 GeV. This is largely because of the
gravitational clustering of monopoles in large dark mat-
ter halos of galaxy clusters, which becomes important at
masses mM & 1017 GeV. For masses mM . 1015 GeV,
the extended Parker limit is more stringent. The above
absolute limit assumes the estimate of vth from Eq. (12)
and hence slightly depends on it, being less stringent for
larger vth.

From the absolute ⌦M -limit, Eq. (25), one obtains the
number density at Earth using Eq. (13) with h

2� ⇠ 1 to
be nM . 10�26 cm�3. This corresponds to the monopole
flux upper limit:

FM . 3⇥ 10�19
m

�3/2
17 cm�2 s�1 sr�1

, (26)

which is significantly tighter than the previous limit in
Eq. (9).

Figure 1 also shows the conditions when two charac-
teristic scales, the plasma skin depth and the magnetic
Debye length, are comparable to the present day horizon
scale. We assume� = 1 for these curves because no grav-
itational trapping occurs on this scale. The skin depth
represents a characteristic scale of various electromag-
netic plasma phenomena. The horizon-scale skin depth
(shown by magenta dashed curve) shows the conditions
when these scales are comparable. Below the line, the
skin depth exceeds the observed size of the Universe.

Even more interesting is the horizon-scale magnetic
Debye length (shown in Figure 1 as a solid brown line)
because the Debye length represents a characteristic scale
below which plasma provides no shielding e↵ect. Obvi-
ously, below this line, the magnetic Debye length is larger
than the size of the Universe, i.e., no shielding of mag-
netic fields at all scales is possible. Thus, we predict that
if future observations will detect fields coherent on Gpc
scales, this would exclude the region above the curve and
thus further limit the monopole abundance by orders of
magnitude, to the region ⌦M < 10�8. This value is,
coincidentally, close to the theoretically predicted abun-
dance given by Eq. (8) after diluted by a factor ⇠ e

60 by
inflation: ⌦M ⇠ 10�11

m
4
17. If inflation proceeds longer,

the dilution of monopoles by ⇠ e
N (N being the number

of e-folds) will proportionally reduce their current ⌦M

well below 10�11, where the plasma collective e↵ects are
harder to observe.

IV. MAGNETIC LANGMUIR WAVES

If �D is smaller than the horizon scale, we predict an
interesting new phenomenon – the magnetic Langmuir
wave. Its dispersion relation is given by Eq. (16). Like
its conventional electrostatic counterpart, this wave is
caused by charge separation and inertia. It can be ex-
cited by time-dependent by dynamic magnetic fields in
galaxy clusters, in jets and outflows from galaxies, as
well as by monopole plasma instabilities driven by flow
inhomogeneities during the formation of the large-scale
structure, e.g., assembly of dark matter sheets and fila-
ments, and mergers of galactic and cluster halos.
Observationally, such a wave may be discerned via its

“zebra pattern” of an alternating magnetic field with a
characteristic wavelength �D ⇠ �wave ⇠ 1/|k|, where k is
the wave vector. This pattern can be detected with Fara-
day rotation and synchrotron emission by energetic elec-
trons. The “smoking gun” signature of the wave would
be the alignment of k and B vectors on the sky. This
is because a Langmuir wave is longitudinal, k ·B 6= 0,
i.e., the B-field is manifestly non-divergence-free. With-
out monopoles, r · B = 0 implies k ·B = 0 identically,
i.e., the field is aligned with the interfaces, as it is seen
in tangential discontinuities, for example. Whether the
pattern has the k ·B 6= 0 signature, can be inferred from
radiation polarization measurements of the field orienta-
tion.
The amplitude of the wave can readily be estimated

from r ·B = 4⇡gD(n+ � n�), yielding

B ⇠ 4⇡gD�nM�wave (27)

⇠ (100 Gauss)

✓
⌦M

3⇥ 10�4

◆1/2

�1/2
m

�1/2
17

�nM

nM

,

where �nM/nM = (n+ � n�)/nM is the dimensionless
density perturbation due to the magnetic charge separa-
tion, and we assumed that �wave ⇠ �D.
Together with the observational upper limit of B <

10�15 Gauss at scales > 100 Mpc, this implies very
small density perturbations of order �nM/nM . 10�17

if ⌦M ⇠ 10�4. Obviously, such waves are in the linear
regime amenable to theoretical studies. Of course, the
“zebra pattern” would only be seen if a single wave is ex-
cited. Quite often, an entire spectrum of waves is present
in plasmas. These waves would be seen as just standard
turbulent B-fields with some spectral distribution. The
turbulence will rather look like a “leopard spots” pat-
tern similar to that of the magnetohydrodynamic (MHD)
turbulence. Projection e↵ects can smear the pattern,
though. Observational demonstration of k ·B 6= 0 in
this turbulence may be di�cult.

V. ORIGIN OF COSMOLOGICAL FIELDS

Interestingly, no magnetic fields on scales larger than
a few Mpc have so far been reliably observed. The up-

Typical energies of astro monopoles are <~ 1e22 eV (just above the GZK cutoff)


