Precision Requirements for the Luminosity Measurement with LumiCal

Data sample : 10⁸ events for each energy regime CLIC3TeV, ILC500, GigaZ with BHLUMI

- Method: 1. generated particles projected on first LumiCal plane and merged if distance between them was < 15mm or entered the same cell
 - 2. gaussian smearing was applied to true energy value
 - 3. true and smeared events passing the cut E_L , $E_R > 0.8 E_{beam}$ were counted and luminosity shift calculated for several values of energy resolution $\sigma(E)$ and bias ΔE

Position Accuracy

The contribution of polar angle offset to relative error on luminosity can be estimated using approximate formula :

$$\Delta L/L \approx 2 \Delta \theta / \theta_{min} \tag{1}$$

The size of $\Delta \theta$ solely due to uncertainty of LumiCal z position and inner radius r can be estimated using straightforward obtainable formula :

$$\Delta \theta \approx (R_{\min} \Delta z - z_{nom} \Delta r) / z_{nom} (z_{nom} + \Delta z)$$
(2)

Where R_{min} is inner radius of LumiCal and z_{nom} is nominal distance from interaction point along z axis. Combining (1) and (2), and setting consecutively uncertainties

 Δz and Δr to zero, one calcutates upper limits for their size independently. Results of these calculations are collected in the table 1.

	Required ∆L/L	Z _{nom} [mm]	R _{min} [mm]	θ _{min} [rad]	$\Delta \theta_{max}$ [rad]	∆z _{max} [mm]	Δr_{max} [mm]
ILC GigaZ	≤ 10 ⁻⁴	2500	80	0.032	1.6x10 ⁻⁶	< 0.125	$< 4x10^{-3}$
ILC 500GeV	≤ 10 ⁻³	2500	80	0.032	1.6x10 ⁻⁵	< 1.25	< 4x10 ⁻²
CLIC 3TeV	≤ 10 ⁻²	2500	100	0.040	2x10 ⁻⁴	< 12.5	< 0.5

FCAL-WS-Kraków-Apr-2010

B. Pawlik, INP PAS, Krakow

Simulated LumiCal Energy Resolution

FCAL-WS-Kraków-Apr-2010

B. Pawlik, INP PAS, Krakow

3

Energy Bias

FCAL-WS-Kraków-Apr-2010

B. Pawlik, INP PAS, Krakow

4

Energy Resolution

FCAL-WS-Kraków-Apr-2010

B. Pawlik, INP PAS, Krakow

5

Energy Resolution Mesurement Accuracy

To keep luminosity shift controlled under 10⁻⁴ required accuracy of the energy resolution measurement is :

 CLIC
 $\Delta \sigma / \sigma < 45\%$

 ILC500
 $\Delta \sigma / \sigma < 21\%$

 GigaZ
 $\Delta \sigma / \sigma < 10\%$

FCAL-WS-Kraków-Apr-2010

B. Pawlik, INP PAS, Krakow

Thank You

FCAL-WS-Kraków-Apr-2010

B. Pawlik, INP PAS, Krakow