BeamCal Simulations with Mokka

Madalina Stanescu-Bellu DESY, Zeuthen

12 April 2010 – FCAL Meeting Krakow

Detector Concept at the ILC

BeamCal

<u>Reduces backscattering</u> from pairs into the inner ILC detector and protects the magnet from the beam delivery system

<u>EM longitudinal sandwich</u> <u>calorimeter; 30layers(Sensors</u> <u>alternate with Absorbers)</u> Absorber=Tungsten. Sensors must be radiation hard (Diamond, GaAs, Si)

Analysis of vast amount of deposited energy from <u>e+e- beamstrahlung pairs</u> → fast estimation of the <u>luminosity</u> and <u>measurement of colliding beams</u> <u>parameters</u>

One sensor segment (19 rings divided into pads)

Beamstrahlung pairs ; beam pipes; reconstructed high energy electron

Guinea Pig Beam-Beam interaction simulation

When linear e+ e- bunches collide

- Bunches are deformed by electromagnetic attraction → LUMINOSITY ENHANCEMENT
- Needed high luminosity (since each pair of bunches has only one chance to cross and interact) →
- These high EM Fields bend the particles (DISRUPTION) \rightarrow
- Transverse acceleration \rightarrow
- Energy loss in the form of synchrotron radiation: BEAMSTRAHLUNG →
- BACKGROUNDS:
 - Electromagnetic (Pairs) : $e+e- \rightarrow gamma-gamma \rightarrow e+e- ...$
 - Hadronic : $e+e- \rightarrow gamma-gamma \rightarrow hadrons$

Guinea Pig Beam-Beam interaction simulation

MONTE CARLO BACKGROUND Simulation from collision of two beams (e+e- or e-e-).

ACCELERATOR:: TESLA

energy = 250 ;
particles = 2.0 ;
sigma_x = 553 ;
sigma_y = 5.0 ;
sigma_z = 300 ;
emitt_x = 10.0 ;
emitt_y = 0.03 ;
charge_sign = -1.0 ;

PARAMETERS:: PAIRS n_x=32 ; n_y=64 ; n_z=32 ; n_t=3 ; n_m=200000 ; electron_ratio=0.05 ; photon_ratio=0.05 ;

OUTPUT: Secondaries.dat – 130.000 Beamstrahlung e+e in ASCII, 9 parameters:

Energy in GeV/c (positive for e-, negative for e+); Velocity (v/c): vx,vy,vz Position (nm): x,y,z Process (Breit-Wheeler, Bethe-Heitler, Landau-Lifshitz), Label

Mokka - general software schema

- → C++ simulation using GEANT4 (simulates passage of matter through detector).
- → GEOMETRY DATA DRIVEN, several detector models in MySQL geometry database.
- → Importance for BeamCal simulations: NEARBY DETECTORS INCLUDED IN SIMULATIONS

Mokka- Parameters and files

INPUT: 1 different GP-Secondary (each with 130.000 events) for each BX

PARAMETERS:

DetectorModel ILD_00fw - constant field Bx=0, By=0, Bz=3.5118

Detector Model ILD_00fwp01 – field map

ILC_Main_Crossing_angle 14.

LorentzTransformationAngle 7.

OUTPUT: Files in LCIO Format (1 for each BX), with ~ 125.000-130.000 events

Marlin

Modular Analysis and Reconstruction for the LINear collider

Simple modular application framework for analysis and reconstruction code based on LCIO.

Marlin-input files

I. XML steering file:

• order of processors to be executed:

<!--processor name="MyTestProc"/>

• global parameters:

LCIO input files generated by Mokka

• processor parameters:

- Collections analyzed (BeamCalCollection)

<u>My Test Processor: gets events and tracks from BEAMCAL and makes analysis of</u> <u>background energy depositions</u>

II. XML geometry file (generated by Mokka)

Results – constant field – longitudinal shower development – 10BXs

10

Results – field map – longitudinal shower development – 10BXs

11

Results – field map – transversal shower development

NEGATIVE BCAL SIDE

POSITIVE BCAL SIDE

12

Comparison Mokka 10BXs - Becas 40BXs

Future steps

- Algorithm for high energy electron signal reconstruction.
- Electron detection efficiency
- Fake rate analysis
- Optimization of the calorimeter segmentation.

THANK YOU VERY MUCH FOR LISTENING !!