Comparison of CCD measurements for csCVD diamonds after irradiation

After TestBeam 2010 Rossendorf

Olga Novgorodova, Sergey Schuwalow DESY Zeuthen

FCAL-Meeting, Spring 2010

Two csCVD diamonds

- Two csCVD diamond (6A100 and So14-10)
- 6A100 -> 100μm : So14-10 -> 320 μm

Irradiated up to several MGy

 Polarization significantly decreases the detector charge collection efficiency in addition to pure trapping mechanism

MIP Response of scCVD Diamond

FCAL-Meeting, 12-13 April 2010

Sensor under ⁹⁰Sr Source: CCD vs HV

FCAL-Meeting, 12-13 April 2010

100

HV, [V

60

80

Damaged Sensor under ⁹⁰Sr Source: CCD vs time

Method of routinely switching bias HV polarity

Switch HV ±60, ±120V for 100 μ m csCVD diamond 6A100 And ±200, ±300V for 320 μ m csCVD diamond So14-10

To suppress bulk polarization of long-living traps

Switching frequency 0.1Hz

run_ch2_00002

CCD vs Time and conclusions

For S014-10 (320 μ m) switching HV polarity algorithm helps to increase CCD vs Time. And with increasing HV increase CCD. For 6A100 (100 μ m) – CCD stay in saturation value around 90 μ m

Thank You!

FCAL-Meeting, 12-13 April 2010