

Test beam results

A. Ignatenko

FCAL meeting, Krakow April 12-13, 2010

➢Goals > Place, facility > Setups > Results Diamonds Sapphires > Summary

Goals

1. Observe signals directly (without amplifier&shaper) from different kinds of sensors under different conditions:

- scCVD diamonds of usual thickness (320 µm)
- thin scCVD diamond (100 µm)
- single crystal sapphires
- fresh sensors
- irradiated sensors

 Estimate charge carrier mobilities for sapphire
Irradiation hardness studies of a thin scCVD and a monocrystalline HTHP diamonds

Place, facility

ELBE facility (FZD Rossendorf)

Setups

Beam setup

Bias voltage feed and signal read-out

CCD setup

CCD measurements as a function of absorbed dose for the thin scCVD diamond

Results

Diamonds

Signal vs bias voltage, scCVD diamonds 320 μm

Fresh diamond

Diamond irradiated to 10 MGy

Signal vs bias voltage, scCVD diamond 100 µm

Signal drops ~1.2 times for integral and ~ 2.7 times for amplitude after few MGy

Signal width vs bias voltage, scCVD diamonds

Signal width for the irradiated 320 μ m diamond is smaller than for the non-irradiated one Other way around for the 100 μ m diamond

Sapphires

Signal vs bias voltage, sapphires 500 µm

Signal drops ~2.4 times for integral and ~ 1.2 times for amplitude after 12.5 MGy

Signal vs beam current, sapphires 500 µm

Bias voltage 500 V

Maximal amplitude is for the sensor irradiated to 5 MGy !

Signal width vs bias voltage, sapphires

Charge carrier mobility estimation, sapphires

$$I^0 = \frac{N}{d} v_{dr}$$

 $v_{dr} = \mu E$ \rightarrow mobility

If the method is right:

Summary

- 1. The signals from scCVD diamonds of different thicknesses and sapphires were investigated at different irradiation stages
- 2. Signal shape is not completely defined by the bias voltage and signal readout scheme, but also the properties of the sensor
- 3. The amplitude of the signal from sapphire drops slower with the absorbed dose than integral charge
- 4. The simulations of sensor behavior in order to understand the signal shape are needed
- 5. The work on data analysis is ongoing

Testbeam crew

