Planning for Electromagnetic Irradiation Studies of Silicon Strip Sensors at SLAC/SCIPP

Viltaliy Fadeyev, Spencer Key*, Donish Khan*, Tom Markiewicz, Bruce Schumm

* Students ** Presenter

Initial thoughts; feedback welcome

Some notes:

- Beam Calorimeter is a sizable project, ~2 m² of sensors.
- Sensors are in unusual regime: ~ 1 GRad of e⁺/e⁻; 10¹⁴
 n/cm² after several years.
- There are on-going studies with GaAs, Diamond, Sapphire materials (FCAL report, Nov 2009).
- We'll concentrate on mainstream Si technology proven by decades of technical development.
- There is some evidence that p-type Si may be particularly resilient:

G.P. Summers et al., IEEE Trans Nucl Sci 40, 1372 (1993)

Damage coefficients less for p-type for E_{e-} < ~1GeV (two groups); note **critical energy** in W is **~10 MeV**

More notes:

 Neutron flux does not seem to be a problem for Si (RD50 findings).

 There are very few e⁺/e⁻ radiation hardness studies:

- S. Dittongo et al (2005); n/p-type Si;160 MRad of 900 MeV e⁻
- J.M. Rafi et al (2009); n-type Si; 1.7 GRad of 2 MeV e⁻

 Our region of interest is 100 MeV – 10 GeV (incidence) and lower (shower max), and 1 GRad

BeamCal Incident Energy Distribution

BUT: Most fluence is at shower max, dominated by ~10 MeV e^{-} , e^{+} and γ . Why might (?) incident energy matter?

NIEL (Non-Ionizing Energy Loss)

Conventional wisdom: Damage proportional to Non-Ionizing Energy Loss (NIEL) of traversing particle

- **NIEL** can be calculated (e.g. G.P. Summers et al., IEEE Trans Nucl Sci **40**, 1372 [1993])
- At $E_c^{Tungsten} \sim 10$ MeV, **NIEL** is 80 times worse for protons than electrons and
- **NIEL** scaling may break down (even less damage from electrons/psistrons)
- **NIEL** rises quickly with decreasing (proton) energy, and fragments would likely be low energy

Might small hadronic fractions dominate damage?

Hadronic Processes in EM Showers

There seem to be three main processes for generating hadrons in EM showers:

 Nuclear ("giant dipole") resonances Resonance at 10-20 MeV (~E_{critical})

- Photoproduction Threshold seems to be about 200 MeV
- Nuclear Compton scattering Threshold at about 10 MeV; ∆ resonance at 340 MeV
- → Flux through silicon sensor should be ~10 MeV e/ γ , but also must appropriately represent hadronic component

Rates (Current) and Energy

Basic Idea:

Direct electron beam of moderate energy on Tungsten radiator; follow with silicon sensor at shower max

For Si, 1 GRad is about 3 x 10¹⁶/cm², or about 5 mili-Coulomb

Current scale is μA, which points to the 1-5 GeV beam at CBAF (Jefferson Lab, Virginia, USA)

Recall spectrum: most beamcal incident e⁺e⁻ below photoproduction and nuclear Compton ranges → having all incident

flux above these thresholds should be conservative.

On the other hand, all incident flux above Giant Dipole Resonance (GDR) in Tungsten \rightarrow Beam must be at least ~100 MeV to incorporate GDR (γ from ⁶⁰CO would not generate hadronic component)

Irradiation Plan

 Intend to use existing sensors from ATLAS R&D (made at Micron). Both n- and p- type, Magnetic Czochralski and Oxygenated Float Zone.

• Plan to assess the bulk damage effects, charge collection efficiency. This will further assess the breakdown on NIEL scaling (x50 at 2 MeV and x4 at 900 MeV) in the energy range of interest.

Next Steps

Need to use EGS/GEANT to design appropriate Tungsten/Silicon geometry to achieve relative uniform 1 cm² illumination for "pencil" beam.

Need to quantify degree of shower multiplication to determine what 1-5 GeV flux will generate 1 Grad at shower max; will impact feasibility of CBAF run

Need to do pre-characterization of a number of different detectors; prepare instrumentation for evaluation of irradiated sensors (mostly in place from ATLAS RD50 studies).

CBAF test at end of calendar year?