

$\Delta\eta$ - $\Delta\phi$ correlations of identified particles in the Beam Energy Scan

Andrzej Lipiec¹⁾, for the STAR collaboration

¹⁾ Warsaw University of Technology

POLITECHNIKA WARSZAWSKA

Supported by: NATIONAL SCIENCE CENTRE POLAND Project number: UMO-2016/21/N/ST2/00315

Angular correlation function:

 $\Delta \eta = \eta_1 - \eta_2$ $\Delta \phi = \phi_1 - \phi_2$

Event 1 # correlated pairs per pair $\rho_{sib}(\Delta\eta,\Delta\phi) = \frac{d^2 N_{sibling}^{pairs}}{N_{sibling}^{pairs} \cdot d(\Delta\eta\Delta\phi)}$ $r = \frac{\rho_{sib}}{\rho_{ref}} \approx \frac{P(\eta_1 \phi_1, \eta_2 \phi_2)}{P(\eta_1 \phi_1) \cdot P(\eta_2 \phi_2)}$ $\rho_{ref}(\Delta\eta,\Delta\phi) = \frac{d^2 N_{ref}^{pairs}}{N_{ef}^{pairs} \cdot d(\Delta\eta\Delta\phi)}$ Event 2,3,4... **# correlated pairs per particle** This talk: $\frac{\Delta \rho}{\sqrt{\rho_{ref}}} = \sqrt{\rho'_{ref}} \cdot \frac{\rho_{sib} - \rho_{ref}}{\rho_{ref}} = \sqrt{\rho'_{ref}} \cdot (r-1)$

In experiment:

 $\sqrt{\rho'_{ref}} \approx d^2 \hat{N} / d \eta d \phi$ is single charged particle density averaged over angular acceptance

Correlation function: a tool to access different physical phenomena

Short-range correlations

Correlations within single jet + FSI, QS, Coulomb + ...

Motivation

Why should we study correlations of identified particles?

- Systematic study of di-hadron correlations in the STAR BES program
- Different shapes of correlation functions for different particles and charge combinations
- Intriguing results for two-proton correlations:

- pp + \overline{pp} not described even qualitatively Observed in:
 - e⁺ + e⁻ @ 29 GeV (Phys. Rev. Lett. 57(1986) 3140)
 - p + p @ 7 TeV (EPJC 77 (2017) no.8, 569)
 - Au + Au @ 7.7 200 GeV (Nuc. Phys. A, 967 (2017), 792-795; PoS(EPS-HEP2017)173)

Need of experimental data for further model development!

Future work:

- Disentanglement of correlation sources,
- Study of collision energy and centrality dependence

THE SOLENOIDAL TRACKER AT RHIC

TPC: $-1 < \eta < +1$, full azimuthal angle coverage ToF: $-0.9 < \eta < +0.9$, full azimuthal angle coverage

by Maria & Alex Schmah

Analysis details

BES at STAR:

<u>Charge combination:</u> Like-Sign (LS: + + and - -) Unlike-Sign (US: + -)

Particle species: Protons Kaons Pions

<u>Centrality: 0% – 80 %</u> <u>Collision energy 7.7 – 200 GeV</u>

<u>Kinematic cuts:</u> • 0.2 < p_⊤ < 0.8 GeV/c

• |η| < 1

PID (TPC only): for each POI

- | nσ^{dE/dx}_{POI} | < 2
- | nσ^{dE/dx}_{other} | > 3

Centrality:

• Based on N_{ch} in $|\eta| < 1$

Corrections:

- 2 cm wide V₂ bins
- 50 particles N_{ch} bins

TPC: $-1 < \eta < +1$, full azimuthal angle coverage ToF: $-0.9 < \eta < +0.9$, full azimuthal angle coverage

$\pi \pi$ correlations

Like-sign pion correlations, Au+Au @ 19.6 GeV

 \rightarrow Peak at small relative azimuth and pseudorapidity (Near-Side)

 $\rightarrow \Delta \phi$ modulation from elliptic flow is the strongest in mid-central collisions

Unlike-sign pion correlations, Au+Au @ 19.6 GeV

t performed

 \rightarrow Clear, broad $\Delta \phi$ ridge \rightarrow charge ordering

- Visible in LS and in US
- Corrections are in progress

Energy dependence of correlation function

Near-side $\Delta \eta$ projections of CF

$\pi\pi$ correlations:

- Weak collision energy dependence
- No non-monotonic changes vs. beam energy
- In LS $\pi\pi$: strong short-range correlations
- In US $\pi\pi$: short-range and long-range correlations

CH2 (∆y)> R2 (∀y)> R2 (∀y) **Parallel STAR analysis:** Different correlator, -0.005 Different $\Delta\eta$ acceptance -0.01 Different centrality selection -0.015^t Tracks crossing effect corrected -0.5 • $0.2 \le p_{\tau} \le 2.0 \text{ GeV/c}$ $\langle R_2(\Delta y) \rangle$ 0.005F Here:

- Projection over whole $\Delta \phi$ acceptance
- General conclusions consistent between analyses

•

p p correlations

$p-p + \overline{p}-\overline{p}$ correlations, Au=Au @ 19.6 GeV

→ Visible away-side ridge

p-p correlations, Au+Au @ 19.6 GeV

- \rightarrow Negative correlation on the near-side, not as broad as in LS
- → Lack of spike at $(\Delta \eta; \Delta \phi) \approx (0; 0)$
- → Lack of away-side ridge

Energy dependence of correlation function

Near-side $\Delta \eta$ projections of CF

pp correlations:

- Anti-correlation observed
 - → in all centralities
 - → in all collision energies
- Weak dependence on centrality and collision energy

$p\overline{p}$ correlations:

- Anti-correlation not as wide as in pp
 - → in all centralities
 - → in all collision energies
- Centrality and collision energy independent

Away-side $\Delta \eta$ projections of CF

$pp + \overline{p}\overline{p}$ correlations:

- Away-side ridge present
- Negative correlation is localised on near-side only

$p\overline{p}$ correlations:

Lack of away-side ridge

Parallel STAR analysis:

 $dR_2(\Delta y) >$

 $(\Delta y) >$

 $< R_2(\Delta y) >$

 $R_2(\Delta y)>$

- Different correlator,
- Different $\Delta\eta$ acceptance
- Different centrality selection
- Tracks crossing effect corrected
- $0.4 \le p_T \le 2.0 \text{ GeV/c}$

Here:

- Projection over whole $\Delta\phi$ acceptance
- General conclusions consistent between analyses
- UrQMD can reproduce negative correlation in pp

Summary

Ongoing analysis (Au+Au @ 7.7, 11.5, 19.6, and 39 GeV):

- Results for **two-pion** correlations:
 - No non-monotonic behavior vs collision energy observed
 - Strong short-range correlations in LS
 - → A broad Δφ ridge in US
- Results for two-proton correlations:
 - $p-p + \overline{p}-\overline{p}$:
 - Anti-correlation observed in all studied energies and centrality classes of Au+Au collisions
 - → Resembles ALICE results (p+p @ 7 TeV, EPJC 77 (2017) no.8, 569)
 - p-p:
 - Anti-correlation at $\Delta \eta, \Delta \phi \sim 0$, but different than in p-p + $\overline{p}-\overline{p}$
 - → Lack of away-side ridge for low-p_Tp-p

Plans for the future:

- Track crossing pair inefficiency corrections
- Analysis in other BES energies
- Disentanglement of observed structures → study of various physical phenomena as a function of centrality and collision energy

BACKUP

Anti-correlation of two antiprotons at small relative rapidity was observed a long time ago

- Baryon number conservation: 2 protons and 2 anti-protons in single process
- 4 baryons \rightarrow high E \rightarrow less likely
- Current MC models \rightarrow E conservation + B conservation \rightarrow but data not reproduced!

QM 2017: first results on angular correlations of identified hadrons in BES: STAR, 0-5% Au+Au @ BES

 $\pi^+\pi^+$, K⁺K⁺ and pp, 0-5% centrality

Nuc. Phys. A, 967 (2017), 792-795

- QM 2017*:
 - Minima for p-p correlations seen in all BES energies in 0-5% Au+Au

*) $\rightarrow p_{T} > 0.2 \text{ GeV/c}$ $\rightarrow \text{PID via TPC + ToF}_{24}$ Depletion in pp + \overline{pp} is <u>**not**</u> caused by:

- Coulomb repulsion (Λ is neutral)

- Depletion in pp + \overline{pp} is <u>**not**</u> caused by:
- Coulomb repulsion (Λ is neutral)
- Fermi-Dirac statistics (p and Λ are different particles)

- Depletion in pp + \overline{pp} is <u>**not**</u> caused by:
- Coulomb repulsion (Λ is neutral)
- Fermi-Dirac statistics (p and Λ are different particles)
- Final State Interactions

