Forward-backward correlations and multiplicity fluctuations in Pb-Pb collisions at $\sqrt{s}_{NN} = 2.76$ TeV from ALICE at the LHC

H. Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

Comparative study of experimental data and MC simulations of Pb+Pb collisions at 2.76 TeV:

- Forward-backward correlation coefficient b_{corr}
- Intensive quantity omega ω
- Strongly intensive quantity sigma Σ

Plan:

- 1. Motivation;
- 2. Analysis;
- 3. Results;
- 4. Summary.

Motivation: Why do we study correlations and fluctuations?

Motivation: Why do we study correlations and fluctuations?

1. Study of **Long-Range Correlations** (LRC):

• LRC carry some **information** on the **early** dynamics of the nuclear collision.

2. Analysis of **fluctuations** in the number of particles produced in nucleus-nucleus collisions:

- A good way to check dynamical models of particle production.
- Gives a chance to study observables sensitive to the early dynamics of the collision, independent of geometrical fluctuations.

The Analysis: ALICE Experiment

The Analysis: Data Sample

Experimental data:

Pb-Pb @ $\sqrt{s_{_{NN}}}$ =2.76 TeV (2010) Tracks: -0.8<η<0.8, 0.2< $p_{_{T}}$ <2.0 GeV/*c* Centrality estimators: V0, ZDC

MC simulations:

MC HIJING Pb-Pb @ $\sqrt{s_{NN}}$ =2.76 TeV Tracks: -0.8< η <0.8, p_{τ} >0.2 GeV/c Centrality:

- \rightarrow estimated by impact parameter
- \rightarrow estimated by charged particle multiplicity in the VO acceptance

Forward-backward correlations

$$\mathbf{b}_{\text{corr}} = \frac{\text{Cov}\left(\mathbf{n}_{\text{F}}, \mathbf{n}_{\text{B}}\right)}{\sqrt{\text{Var}(\mathbf{n}_{\text{F}})\text{Var}(\mathbf{n}_{\text{B}})}}$$

Forward-backward correlations

Centrality estimator: charged particles in V0

Forward-backward correlations b_{corr} : dependence on $\Delta \eta$

Forward-backward correlations b_{corr} : dependence on $\Delta\eta$

Forward-backward correlations b_{corr} : dependence on $\Delta \eta$

Forward-backward correlations b_{corr} : dependence on $\Delta \eta$

Forward-backward correlations b_{corr}: dependence on centrality bin width

Intensive quantity $\boldsymbol{\omega}$

Intensive quantity **w**

Strongly intensive quantity Σ

Strongly intensive quantity Σ: dependence on centrality bin width

Summary

- **1.** First data on forward-backward correlations (b_{corr}) in Pb-Pb collisions at $\sqrt{s_{NN}}$ =2.76 TeV:
- \rightarrow large dependence on centrality bin width and estimator!
- \rightarrow information on early dynamics is mixed with trivial geometrical fluctuations.

2. A detailed MC analysis of the FB correlation coefficient (b_{corr}), intensive (ω), and strongly-intensive (Σ) quantities at LHC energies:

- $\rightarrow \omega$: large dependence on centrality bin width and estimator;
- $\rightarrow \Sigma$: deviation from unity, increase with rapidity gap;
- $\rightarrow \Sigma$: does not depend on centrality selection method nor on centrality bin width
 - \rightarrow these are properties of a strongly intensive quantity!

3. Experimental data on intensive (ω), and strongly-intensive (Σ) quantities in Pb-Pb collisions at LHC enegies will be available soon (~ongoing).

 \rightarrow comparison between experimental data and MC simulations for the strongly intensive quantity Σ will bring important information on the early dynamics, unaffected by trivial geometrical fluctuations.

THANK YOU!